Annales Universitatis Paedagogicae Cracoviensis

Studia ad Didacticam Mathematicae Pertinentia VII (2015)

Jan Górowski, Adam Łomnicki

Iterations of homographic functions and recurrence equations involving a homographic function^{*}

Abstract. The formulas for the *m*-th iterate $(m \in \mathbb{N})$ of an arbitrary homographic function H are determined and the necessary and sufficient conditions for a solution of the equation $y_{m+1} = H(y_m), m \in \mathbb{N}$ to be an infinite *n*-periodic sequence are given. Based on the results from this paper one can easily determine some particular solutions of the Babbage functional equation.

1. Preliminaries

The recurrence equations involving a homographic function where studied in (Graham, Knuth, Patashnik, 2002). The authors stated that the only known examples of such equations possessing periodic solutions are

$$y_{m+1} = 2i\sin \pi r + \frac{1}{y_m}, \qquad m \in \mathbb{N},$$

where r is a rational number such that $0 \le r < \frac{1}{2}$.

Various approaches to the sequences given by the recurrence equation

$$y_{m+1} = H(y_m), \qquad m \in \mathbb{N},\tag{1}$$

where H is a homographic function may be found in (Koźniewska, 1972; Levy, Lessman, 1966; Uss, 1966; Wachniccy, 1966).

In this paper we prove formulas determining all solutions of (1). We also give the necessary and sufficient conditions for a solution of (1) to be periodic.

We also determine some particular solutions of the Babbage functional equation

$$\varphi^m(x) = x, \qquad x \in X,\tag{2}$$

where *m* is an arbitrary fixed integer. Recall that ψ^n for $n \in \mathbb{N}$ denotes the *n*-th iterate of a function $\psi: X \to X$, i.e. $\psi^0 = \operatorname{Id}_X$ and $\psi^n = \psi \circ \psi^{n-1}$ for integer $n \geq 1$.

^{*}Iteracje funkcji homograficznej i równanie rekurencyjne zadane funkcją homograficzną

²⁰¹⁰ Mathematical Subject Classification: Primary: 26A18; 37B20; 39B22

Key words and phrases: Iterations of homographic functions, recurrence equation, periodic sequences

Some results concerning (2) may be found in (Kuczma, 1968). In particular the following

THEOREM 1 (KUCZMA, 1968, P. 291) If φ is a meromorphic solution of equation (2), then

$$\varphi(x) = \frac{a'x + b'}{c'x + d'}$$

for some $a', b', c', d' \in \mathbb{C}$.

THEOREM 2 (KUCZMA, 1968, P. 291) If $L(x) = \alpha x + \beta$, where $\alpha \neq 0$, then φ satisfies (2) if and only if $L^{-1} \circ \varphi \circ L$ does so.

THEOREM 3 (KUCZMA, 1968, P. 291) Let $K_{-1} = 0$, $K_0 = 1$, $K_m = \gamma K_{m-1} + \delta K_{m-2}$ for $m \in \mathbb{N}_+$ and let $S(x) = \gamma + \frac{\delta}{x}$, where $\gamma, \delta \in \mathbb{C}$ and $\delta \neq 0$, then

$$S^{m}(x) = \frac{K_{m}x + \delta K_{m-1}}{K_{m-1}x + \delta K_{m-2}} \quad \text{for } m \in \mathbb{N}_{+}.$$
(3)

Let

$$H(x) := \frac{ax+b}{cx+d}, \quad \text{where } a, b, c, d \in \mathbb{C}, \ c \neq 0, \ ad-bc \neq 0 \tag{4}$$

In the sequel we assume that the domain of H is the set D defined as follows

$$D:=\bigcap_{m\in\mathbb{N}_+}D_{H^m},$$

where D_{H^m} denotes the domain of H^m and $\mathbb{N}_+ := \mathbb{N} \setminus \{0\}$. We also set $H^0 := \mathrm{Id}_D$. Let $H: D \to \mathbb{C}$ be a function given by (4) and let

 $y_0 = x_0$ and $y_{m+1} = H(y_m)$ for an $x_0 \in D$ and $m \in \mathbb{N}$.

Notice that

$$y_m = H^m(x_0) \qquad m \in \mathbb{N} \tag{5}$$

and $x_0, H(x_0), H^2(x_0), \ldots, H^{m-1}(x_0) \in D$.

Based on the theory of recurrence linear equations of order 2 with constant coefficients (Koźniewska, 1972, p. 59) we get

LEMMA 1 Let $K_{-1} = 0$, $K_0 = 1$, $K_m = \gamma K_{m-1} + \delta K_{m-2}$ for $m \in \mathbb{N}_+$, $\delta \neq 0$ and let $\Delta = \gamma^2 + 4\delta$. Then for $m \in \mathbb{N} \cup \{-1\}$,

1°
$$K_m = (m+1) \left(\frac{\gamma}{2}\right)^m$$
, if $\Delta = 0$,
2° $K_m = \frac{1}{\sqrt{\Delta}} \left(\left(\frac{\gamma + \sqrt{\Delta}}{2}\right)^{m+1} - \left(\frac{\gamma - \sqrt{\Delta}}{2}\right)^{m+1} \right)$, if $\Delta \neq 0$,

where $\sqrt{\Delta}$ denotes one of the complex square roots of Δ .

A consequence of Lemma 1 is

LEMMA 2
If
$$K_{-1} = 0$$
, $K_0 = 1$, $K_m = \gamma K_{m-1} + \delta K_{m-2}$ for $m \in \mathbb{N}_+$, $\delta \neq 0$, $\gamma, \delta \in \mathbb{R}$ and
 $\Delta = \gamma^2 + 4\delta$, then for $m \in \mathbb{N} \cup \{-1\}$,
1° $K_m = (m+1)\left(\frac{\gamma}{2}\right)^m$, if $\Delta = 0$,
2° $K_m = \frac{1}{\sqrt{\Delta}} \left(\left(\frac{\gamma + \sqrt{\Delta}}{2}\right)^{m+1} - \left(\frac{\gamma - \sqrt{\Delta}}{2}\right)^{m+1} \right)$, if $\Delta > 0$,
3° $K_m = (\sqrt{-\delta})^m \cos \frac{m\pi}{2}$, if $\gamma = 0$ and $\Delta < 0$,
4° $K_m = (\sqrt{-\Delta})^m (\cos m\psi + \cot \psi \sin m\psi)$, if $\gamma \neq 0$ and $\Delta < 0$,

where ψ is the principal value of an argument of the complex number $\frac{\gamma}{2} + i \frac{\sqrt{-\Delta}}{2}$.

2. Periodic solutions of the recurrence equation

Definition 1

An infinite sequence $(y_m)_{m \in \mathbb{N}}$ is called periodic with period n (or n-periodic), where $n \in \mathbb{N}, n \ge 1$, if $y_{m+n} = y_m$ for every $m \in \mathbb{N}$.

Consider equation (1) with the initial condition $y_0 = x_0$, where $H: D \to \mathbb{C}$ is a function defined by (4) and $x_0 \in D$. By (5) we get

Lemma 3

Let $H: D \to \mathbb{C}$ be a function defined by (4) and let $n \ge 2$ be a fixed integer. Every solution of (1) is periodic with period n if and only if

$$H^n = \mathrm{Id}_D. \tag{6}$$

Proof. Assume that for some integer $n \ge 2$ equation (6) holds, then by (5) for every $m \in \mathbb{N}$ we have

$$y_{m+n} = H^{m+n}(x_0) = H^m(H^n(x_0)) = H^m(x_0) = y_m$$

where $y_0 = x_0 \in D$. For the converse suppose that every solution of (1) is *n*-periodic. Let $x_0 \in D$, so $H^m(x_0) \in D$ for every $m \in \mathbb{N}$. Put $y_m := H^m(x_0)$, $m \in \mathbb{N}$. The sequence $(y_m)_{m \in \mathbb{N}}$ satisfies (1), so it is *n*-periodic. Thus

$$H^{n}(x_{0}) = y_{n} = y_{0} = H^{0}(x_{0}) = x_{0}.$$

Hence (6) holds.

Observe that Lemma 3 holds true if H is an arbitrary function with a proper domain satisfying (2).

[29]

Theorem 4

Let $S: D' \to \mathbb{C}$ be a function defined as $S(x) = \gamma - \frac{\delta}{x}$, where $\gamma, \delta \in \mathbb{C}$, $\delta \neq 0$ and $D' := \bigcap_{m \in \mathbb{N}_+} D_{S^m}$, where D_{S^m} denotes the domain of S^m . Every sequence $(y_m)_{m \in \mathbb{N}}$ satisfying the following recurrence relation

$$y_{m+1} = S(y_m), \quad m \in \mathbb{N} \tag{7}$$

is 2-periodic if and only if $\gamma = 0$.

Proof. In view of Lemma 3 it follows that every sequence $(y_m)_{m \in \mathbb{N}}$ satisfying (7) is 2-periodic if and only if

$$S^{2}(x) = \gamma + \frac{\delta x}{\gamma x + \delta} = \mathrm{Id}_{D'}(x), \quad x \in D'.$$

Which is equivalent to the fact that $\gamma = 0$.

Now we prove the following results.

Theorem 5

Let S be as in Theorem 4, $\Delta = \gamma^2 + 4\delta$ and let $n \in \mathbb{N}$ be such that $n \geq 3$.

- (i) If every sequence $(y_m)_{m\in\mathbb{N}}$ satisfying (7) is n-periodic, then $\Delta \neq 0$ and $\delta =$ $\frac{-\gamma^2}{4\cos^2\frac{k\pi}{n}} \text{ for some } k \in \{1, 2, 3, \dots, n-1\}.$
- (ii) If $k \in \{1, 2, 3, \dots, n-1\}$ and $\gamma^2 + 4\delta \neq 0$ and $4\delta \cos^2 \frac{k\pi}{n} = -\gamma^2$, then every sequence $(y_m)_{m \in \mathbb{N}}$ satisfying (7) is n-periodic.

Proof. To show (i) observe that by Lemma 3 we get

$$S^n(x) = x, \quad x \in D'. \tag{8}$$

By Theorem 3 and Lemma 1, (8) is equivalent to the following conditions

$$\frac{K_n x + \delta K_{n-1}}{K_{n-1} x + \delta K_{n-2}} - x \frac{K_{n-1} x + \delta K_{n-2}}{K_{n-1} x + \delta K_{n-2}} = 0, \quad x \in D',$$

$$\frac{\gamma K_{n-1} x + \delta K_{n-2} x + \delta K_{n-1} - K_{n-1} x^2 - \delta K_{n-2} x}{K_{n-1} x + \delta K_{n-2}} = 0, \quad x \in D',$$

$$\frac{K_{n-1} (-x^2 + \gamma x + \delta)}{K_{n-1} x + \delta K_{n-2}} = 0, \quad x \in D',$$

$$K_{n-1} = 0,$$

$$\Delta \neq 0 \quad \text{and} \quad \left(\frac{\gamma + \sqrt{\Delta}}{2}\right)^n = \left(\frac{\gamma - \sqrt{\Delta}}{2}\right)^n,$$

$$\Delta \neq 0 \quad \text{and} \quad (\gamma + \sqrt{\Delta})^n = (\gamma - \sqrt{\Delta})^n,$$
and $\exists h \in \{1, \dots, n-1\}$, $x \neq \sqrt{\Delta} = (\gamma - \sqrt{\Delta})^n,$

 $\Delta \neq 0 \text{ and } \exists k \in \{1, \dots, n-1\}: \ \gamma + \sqrt{\Delta} = (\gamma - \sqrt{\Delta}) \bigg(\cos \frac{2\kappa n}{n} + i \sin \frac{2\kappa n}{n} \bigg).$ (9)

[30]

Now notice that

$$\gamma + \sqrt{\Delta} = (\gamma - \sqrt{\Delta}) \left(\cos \frac{2k\pi}{n} + i \sin \frac{2k\pi}{n} \right)$$

is equivalent to the following conditions

$$\sqrt{\Delta} \left(1 + \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} \right) = \gamma \left(\cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n} - 1 \right),$$

$$2\sqrt{\Delta} \cos\frac{k\pi}{n} \left(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n} \right) = 2\gamma \sin\frac{k\pi}{n} \left(i\cos\frac{k\pi}{n} - \sin\frac{k\pi}{n} \right),$$

$$2\sqrt{\Delta} \cos\frac{k\pi}{n} \left(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n} \right) = 2\gamma i\sin\frac{k\pi}{n} \left(\cos\frac{k\pi}{n} + i\sin\frac{k\pi}{n} \right). \tag{10}$$

Thus condition (9) is equivalent to

$$\Delta \neq 0 \text{ and } \exists k \in \{1, \dots, n-1\} \ \sqrt{\Delta} \cos \frac{k\pi}{n} = \gamma i \sin \frac{k\pi}{n}$$
$$\Delta \neq 0 \text{ and } \exists k \in \{1, \dots, n-1\} \ \sqrt{\Delta} = \gamma i \tan \frac{k\pi}{n},$$
$$\Delta \neq 0 \text{ and } \exists k \in \{1, \dots, n-1\} \ \Delta = -\gamma^2 \tan^2 \frac{k\pi}{n},$$
$$\Delta \neq 0 \text{ and } \exists k \in \{1, \dots, n-1\} \ \delta = \frac{-\gamma^2}{4 \cos^2 \frac{k\pi}{n}},$$

which completes the proof of (i).

For the implication (ii) consider two cases:

a. *n* is an even number and $k = \frac{n}{2}$,

b. *n* is an even number and $k \neq \frac{n}{2}$ or *n* is odd and $k \in \{1, 2, 3, \dots, n-1\}$.

In the case a, we get $\gamma = 0$ and according to Theorem 4 every sequence satisfying (7) is 2-periodic and hence *n*-periodic.

For the case b, notice that for every $k \in \{1, 2, 3, ..., n-1\}$, $\cos \frac{k\pi}{n} \neq 0$ we have $\Delta \neq 0$ and $\delta = \frac{-\gamma^2}{4 \cos^2 \frac{k\pi}{n}}$ which yields $\Delta = -\gamma^2 \tan^2 \frac{k\pi}{n}$. Denote by $\sqrt{\Delta}$ the number $\gamma i \tan \frac{k\pi}{n}$, thus $\sqrt{\Delta} \cos \frac{k\pi}{n} = \gamma i \sin \frac{k\pi}{n}$ which is equivalent to (10). Now reversing the reasoning from the case (i) – from condition (10) to (8) (without condition (9)) – finishes the proof.

The results obtained above will be now applied to examine the sequences defined by (1).

Theorem 6

If $H: D \to \mathbb{C}$ is a function given by (4) and $(K_{-1}, K_0, K_1, \ldots)$ is a sequence defined in Theorem 3 for which $\gamma = a + d$ and $\delta = bc - ad$, then

$$H^{m}(x) = \frac{1}{c} \frac{cK_{m}x + dK_{m} + \delta K_{m-1}}{cK_{m-1}x + dK_{m-1} + \delta K_{m-2}} - \frac{d}{c} \quad \text{for } m \in \mathbb{N}_{+}, \ L(x) \in D.$$
(11)

Proof. Let $\gamma = a + d$, $\delta = bc - ad$, $L(x) = \frac{x}{c} - \frac{d}{c}$ and $S(x) = (L^{-1} \circ H \circ L)(x)$, $L(x) \in D$. We have

$$L^{-1}(x) = cx + d,$$

$$(H \circ L)(x) = \frac{ax + bc - ad}{cx},$$

$$S(x) = (L^{-1} \circ H \circ L)(x) = a + d + \frac{bc - ad}{x} = \gamma + \frac{\delta}{x},$$

for $L(x) \in D$, where $\delta \neq 0$. By Theorem 3 we obtain

$$S^{m}(x) = \frac{K_{m}x + \delta K_{m-1}}{K_{m-1}x + \delta K_{m-2}} \quad \text{for } m \in \mathbb{N}_{+}, \ L(x) \in D.$$

Now observe that

$$S^m = L^{-1} \circ H^m \circ L \quad \text{for } m \in \mathbb{N}_+,$$

thus

$$H^m = L \circ S^m \circ L^{-1} \quad \text{for } m \in \mathbb{N}_+.$$

which gives (11).

Lemma 3 and Theorem 2 yield

Theorem 7

Let $H: D \to \mathbb{C}$ be a function defined by (4), $L(x) = \frac{x}{c} - \frac{d}{c}$, $S(x) = (L^{-1} \circ H \circ L)(x)$, $L(x) \in D$ and let $n \geq 2$ be a fixed integer. Then every solution of (1) is n-periodic if and only if

$$S^n = \mathrm{Id}_D$$

3. Examples

From the proof of Theorem 5 it follows that condition

$$\gamma^2 + 4\delta \neq 0$$
 and $\exists k \in \{1, \dots, n-1\} \sqrt{\gamma^2 + 4\delta} = -\gamma i \tan \frac{k\pi}{n}$ (12)

is equivalent to the fact that every sequence $(y_m)_{m\in\mathbb{N}}$ satisfying equation

$$y_{m+1} = \gamma + \frac{\delta}{y_m}$$

or equation

$$y_{m+1} = \frac{ay_m + b}{cy_m + d},$$

where $a + d = \gamma$ and $bc - ad \neq 0$, is *n*-periodic with $n \geq 3$.

Moreover, it is easy to find numbers γ , δ satisfying (12) and a, b, c, d-solutions of the system $a + d = \gamma$, $bc - ad \neq 0$. Namely, for n = 3, $\gamma = 1$, $\delta = -1$ (12) is

fulfilled and numbers a = 2, b = -3, c = 1, d = -1 satisfy the system a + d = 1, bc - ad = -1, thus in view of Theorem 5 and Lemma 3 the following functions

$$S(x) = 1 + \frac{-1}{x}, \qquad H(x) = \frac{2x-3}{x-1}$$

fulfil the Babbage equation $\varphi^3(x) = x$ (which can be directly checked).

Now let n = 4, for $\gamma = 2$, $\delta = -2$ (12) holds true. Let a = 3, b = -5, c = 1 and d = -1, then a + d = 2, bc - ad = -2. Similarly as above we get that the mappings

$$S(x) = 2 + \frac{-2}{x}, \qquad H(x) = \frac{3x - 5}{x - 1}$$

satisfy equation $\varphi^4(x) = x$.

References

Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, *Matematyka konkretna*, PWN, Warszawa.

Koźniewska, J.: 1972, Równania rekurencyjne, PWN, Warszawa.

Kuczma, M.: 1968, *Functional Equations in a Single Variable*, Monogr. Math. 46, PWN-Polish Scientific Publishers, Warszawa.

Levy, H., Lessman, F.: 1966, Równania różnicowe skończone, PWN, Warszawa.

- Uss, P.: 1966, Rekurencyjność inaczej, Gradient 2, 102-106.
- Wachniccy, K. E.: 1966, O ciągach rekurencyjnych określonych funkcją homograficzną, Gradient 5, 275-288.

Instytut Matematyki Uniwersytet Pedagogiczny ul. Podchorążych 2 PL-30-084 Kraków e-mail jangorowski@interia.pl e-mail alomnicki@poczta.fm

[33]