Annales Universitatis Paedagogicae Cracoviensis

Studia ad Didacticam Mathematicae Pertinentia VII (2015)

Jan Górowski, Adam Łomnicki
 Iterations of homographic functions and recurrence equations involving a homographic function*

Abstract

The formulas for the m-th iterate ($m \in \mathbb{N}$) of an arbitrary homographic function H are determined and the necessary and sufficient conditions for a solution of the equation $y_{m+1}=H\left(y_{m}\right), m \in \mathbb{N}$ to be an infinite n-periodic sequence are given. Based on the results from this paper one can easily determine some particular solutions of the Babbage functional equation.

1. Preliminaries

The recurrence equations involving a homographic function where studied in (Graham, Knuth, Patashnik, 2002). The authors stated that the only known examples of such equations possessing periodic solutions are

$$
y_{m+1}=2 \mathrm{i} \sin \pi r+\frac{1}{y_{m}}, \quad m \in \mathbb{N}
$$

where r is a rational number such that $0 \leq r<\frac{1}{2}$.
Various approaches to the sequences given by the recurrence equation

$$
\begin{equation*}
y_{m+1}=H\left(y_{m}\right), \quad m \in \mathbb{N} \tag{1}
\end{equation*}
$$

where H is a homographic function may be found in (Koźniewska, 1972; Levy, Lessman, 1966; Uss, 1966; Wachniccy, 1966).

In this paper we prove formulas determining all solutions of (1). We also give the necessary and sufficient conditions for a solution of (1) to be periodic.

We also determine some particular solutions of the Babbage functional equation

$$
\begin{equation*}
\varphi^{m}(x)=x, \quad x \in X \tag{2}
\end{equation*}
$$

where m is an arbitrary fixed integer. Recall that ψ^{n} for $n \in \mathbb{N}$ denotes the n-th iterate of a function $\psi: X \rightarrow X$, i.e. $\psi^{0}=\operatorname{Id}_{X}$ and $\psi^{n}=\psi \circ \psi^{n-1}$ for integer $n \geq 1$.

[^0]Some results concerning (2) may be found in (Kuczma, 1968). In particular the following

Theorem 1 (Kuczma, 1968, p. 291)
If φ is a meromorphic solution of equation (2), then

$$
\varphi(x)=\frac{a^{\prime} x+b^{\prime}}{c^{\prime} x+d^{\prime}}
$$

for some $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in \mathbb{C}$.
Theorem 2 (Kuczma, 1968, p. 291)
If $L(x)=\alpha x+\beta$, where $\alpha \neq 0$, then φ satisfies (2) if and only if $L^{-1} \circ \varphi \circ L$ does so.
Theorem 3 (Kuczma, 1968, p. 291)
Let $K_{-1}=0, K_{0}=1, K_{m}=\gamma K_{m-1}+\delta K_{m-2}$ for $m \in \mathbb{N}_{+}$and let $S(x)=\gamma+\frac{\delta}{x}$, where $\gamma, \delta \in \mathbb{C}$ and $\delta \neq 0$, then

$$
\begin{equation*}
S^{m}(x)=\frac{K_{m} x+\delta K_{m-1}}{K_{m-1} x+\delta K_{m-2}} \quad \text { for } m \in \mathbb{N}_{+} \tag{3}
\end{equation*}
$$

Let

$$
\begin{equation*}
H(x):=\frac{a x+b}{c x+d}, \quad \text { where } a, b, c, d \in \mathbb{C}, c \neq 0, a d-b c \neq 0 \tag{4}
\end{equation*}
$$

In the sequel we assume that the domain of H is the set D defined as follows

$$
D:=\bigcap_{m \in \mathbb{N}_{+}} D_{H^{m}}
$$

where $D_{H^{m}}$ denotes the domain of H^{m} and $\mathbb{N}_{+}:=\mathbb{N} \backslash\{0\}$. We also set $H^{0}:=\operatorname{Id}_{D}$.
Let $H: D \rightarrow \mathbb{C}$ be a function given by (4) and let

$$
y_{0}=x_{0} \quad \text { and } \quad y_{m+1}=H\left(y_{m}\right) \quad \text { for an } x_{0} \in D \text { and } m \in \mathbb{N}
$$

Notice that

$$
\begin{equation*}
y_{m}=H^{m}\left(x_{0}\right) \quad m \in \mathbb{N} \tag{5}
\end{equation*}
$$

and $x_{0}, H\left(x_{0}\right), H^{2}\left(x_{0}\right), \ldots, H^{m-1}\left(x_{0}\right) \in D$.
Based on the theory of recurrence linear equations of order 2 with constant coefficients (Koźniewska, 1972, p. 59) we get

Lemma 1

Let $K_{-1}=0, K_{0}=1, K_{m}=\gamma K_{m-1}+\delta K_{m-2}$ for $m \in \mathbb{N}_{+}, \delta \neq 0$ and let $\Delta=\gamma^{2}+4 \delta$. Then for $m \in \mathbb{N} \cup\{-1\}$,

$$
\begin{aligned}
& 1^{o} K_{m}=(m+1)\left(\frac{\gamma}{2}\right)^{m}, \text { if } \Delta=0 \\
& \mathcal{2}^{o} K_{m}=\frac{1}{\sqrt{\Delta}}\left(\left(\frac{\gamma+\sqrt{\Delta}}{2}\right)^{m+1}-\left(\frac{\gamma-\sqrt{\Delta}}{2}\right)^{m+1}\right), \text { if } \Delta \neq 0,
\end{aligned}
$$

where $\sqrt{\Delta}$ denotes one of the complex square roots of Δ.
A consequence of Lemma 1 is
Lemma 2
If $K_{-1}=0, K_{0}=1, K_{m}=\gamma K_{m-1}+\delta K_{m-2}$ for $m \in \mathbb{N}_{+}, \delta \neq 0, \gamma, \delta \in \mathbb{R}$ and $\Delta=\gamma^{2}+4 \delta$, then for $m \in \mathbb{N} \cup\{-1\}$,

$$
\begin{aligned}
& 1^{o} K_{m}=(m+1)\left(\frac{\gamma}{2}\right)^{m}, \text { if } \Delta=0, \\
& 2^{o} K_{m}=\frac{1}{\sqrt{\Delta}}\left(\left(\frac{\gamma+\sqrt{\Delta}}{2}\right)^{m+1}-\left(\frac{\gamma-\sqrt{\Delta}}{2}\right)^{m+1}\right), \text { if } \Delta>0, \\
& 3^{o} K_{m}=(\sqrt{-\delta})^{m} \cos \frac{m \pi}{2}, \text { if } \gamma=0 \text { and } \Delta<0, \\
& 4^{o} K_{m}=(\sqrt{-\Delta})^{m}(\cos m \psi+\cot \psi \sin m \psi), \text { if } \gamma \neq 0 \text { and } \Delta<0,
\end{aligned}
$$

where ψ is the principal value of an argument of the complex number $\frac{\gamma}{2}+\mathrm{i} \frac{\sqrt{-\Delta}}{2}$.

2. Periodic solutions of the recurrence equation

Definition 1

An infinite sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ is called periodic with period n (or n-periodic), where $n \in \mathbb{N}, n \geq 1$, if $y_{m+n}=y_{m}$ for every $m \in \mathbb{N}$.

Consider equation (1) with the initial condition $y_{0}=x_{0}$, where $H: D \rightarrow \mathbb{C}$ is a function defined by (4) and $x_{0} \in D$. By (5) we get

Lemma 3

Let $H: D \rightarrow \mathbb{C}$ be a function defined by (4) and let $n \geq 2$ be a fixed integer. Every solution of (1) is periodic with period n if and only if

$$
\begin{equation*}
H^{n}=\mathrm{Id}_{D} \tag{6}
\end{equation*}
$$

Proof. Assume that for some integer $n \geq 2$ equation (6) holds, then by (5) for every $m \in \mathbb{N}$ we have

$$
y_{m+n}=H^{m+n}\left(x_{0}\right)=H^{m}\left(H^{n}\left(x_{0}\right)\right)=H^{m}\left(x_{0}\right)=y_{m},
$$

where $y_{0}=x_{0} \in D$. For the converse suppose that every solution of (1) is n periodic. Let $x_{0} \in D$, so $H^{m}\left(x_{0}\right) \in D$ for every $m \in \mathbb{N}$. Put $y_{m}:=H^{m}\left(x_{0}\right)$, $m \in \mathbb{N}$. The sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfies (1), so it is n-periodic. Thus

$$
H^{n}\left(x_{0}\right)=y_{n}=y_{0}=H^{0}\left(x_{0}\right)=x_{0}
$$

Hence (6) holds.
Observe that Lemma 3 holds true if H is an arbitrary function with a proper domain satisfying (2).

Theorem 4

Let $S: D^{\prime} \rightarrow \mathbb{C}$ be a function defined as $S(x)=\gamma-\frac{\delta}{x}$, where $\gamma, \delta \in \mathbb{C}, \delta \neq 0$ and $D^{\prime}:=\bigcap_{m \in \mathbb{N}_{+}} D_{S^{m}}$, where $D_{S^{m}}$ denotes the domain of $\stackrel{\sim}{S}^{m}$. Every sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfying the following recurrence relation

$$
\begin{equation*}
y_{m+1}=S\left(y_{m}\right), \quad m \in \mathbb{N} \tag{7}
\end{equation*}
$$

is 2-periodic if and only if $\gamma=0$.
Proof. In view of Lemma 3 it follows that every sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfying (7) is 2-periodic if and only if

$$
S^{2}(x)=\gamma+\frac{\delta x}{\gamma x+\delta}=\operatorname{Id}_{D^{\prime}}(x), \quad x \in D^{\prime}
$$

Which is equivalent to the fact that $\gamma=0$.
Now we prove the following results.

Theorem 5

Let S be as in Theorem 4, $\Delta=\gamma^{2}+4 \delta$ and let $n \in \mathbb{N}$ be such that $n \geq 3$.
(i) If every sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfying (7) is n-periodic, then $\Delta \neq 0$ and $\delta=$ $\frac{-\gamma^{2}}{4 \cos ^{2} \frac{k \pi}{n}}$ for some $k \in\{1,2,3, \ldots, n-1\}$.
(ii) If $k \in\{1,2,3, \ldots, n-1\}$ and $\gamma^{2}+4 \delta \neq 0$ and $4 \delta \cos ^{2} \frac{k \pi}{n}=-\gamma^{2}$, then every sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfying (7) is n-periodic.

Proof. To show (i) observe that by Lemma 3 we get

$$
\begin{equation*}
S^{n}(x)=x, \quad x \in D^{\prime} \tag{8}
\end{equation*}
$$

By Theorem 3 and Lemma 1, (8) is equivalent to the following conditions

$$
\begin{aligned}
\frac{K_{n} x+\delta K_{n-1}}{K_{n-1} x+\delta K_{n-2}}-x \frac{K_{n-1} x+\delta K_{n-2}}{K_{n-1} x+\delta K_{n-2}} & =0, \\
\frac{\gamma K_{n-1} x+\delta K_{n-2} x+\delta K_{n-1}-K_{n-1} x^{2}-\delta K_{n-2} x}{K_{n-1} x+\delta K_{n-2}} & =0, \\
\frac{K_{n-1}\left(-x^{2}+\gamma x+\delta\right)}{K_{n-1} x+\delta K_{n-2}} & =0, \quad x \in D^{\prime}, \\
K_{n-1} & =0, \\
\Delta \neq 0 & \text { and }\left(\frac{\gamma+\sqrt{\Delta}}{2}\right)^{n}=\left(\frac{\gamma-\sqrt{\Delta}}{2}\right)^{n} \\
\Delta \neq 0 \text { and }(\gamma+\sqrt{\Delta})^{n}=(\gamma-\sqrt{\Delta})^{n} &
\end{aligned}
$$

$$
\begin{equation*}
\Delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\}: \gamma+\sqrt{\Delta}=(\gamma-\sqrt{\Delta})\left(\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}\right) \tag{9}
\end{equation*}
$$

Now notice that

$$
\gamma+\sqrt{\Delta}=(\gamma-\sqrt{\Delta})\left(\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}\right)
$$

is equivalent to the following conditions

$$
\begin{align*}
& \sqrt{\Delta}\left(1+\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}\right)=\gamma\left(\cos \frac{2 k \pi}{n}+\mathrm{i} \sin \frac{2 k \pi}{n}-1\right) \\
& 2 \sqrt{\Delta} \cos \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+\mathrm{i} \sin \frac{k \pi}{n}\right)=2 \gamma \sin \frac{k \pi}{n}\left(\mathrm{i} \cos \frac{k \pi}{n}-\sin \frac{k \pi}{n}\right), \\
& 2 \sqrt{\Delta} \cos \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+\mathrm{i} \sin \frac{k \pi}{n}\right)=2 \gamma \mathrm{i} \sin \frac{k \pi}{n}\left(\cos \frac{k \pi}{n}+\mathrm{i} \sin \frac{k \pi}{n}\right) . \tag{10}
\end{align*}
$$

Thus condition (9) is equivalent to

$$
\begin{aligned}
& \Delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\} \sqrt{\Delta} \cos \frac{k \pi}{n}=\gamma \mathrm{i} \sin \frac{k \pi}{n}, \\
& \Delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\} \sqrt{\Delta}=\gamma \operatorname{i} \tan \frac{k \pi}{n} \\
& \Delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\} \Delta=-\gamma^{2} \tan ^{2} \frac{k \pi}{n}, \\
& \Delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\} \delta=\frac{-\gamma^{2}}{4 \cos ^{2} \frac{k \pi}{n}}
\end{aligned}
$$

which completes the proof of (i).
For the implication (ii) consider two cases:
a. n is an even number and $k=\frac{n}{2}$,
b. n is an even number and $k \neq \frac{n}{2}$ or n is odd and $k \in\{1,2,3, \ldots, n-1\}$.

In the case a, we get $\gamma=0$ and according to Theorem 4 every sequence satisfying (7) is 2 -periodic and hence n-periodic.

For the case b, notice that for every $k \in\{1,2,3, \ldots, n-1\}, \cos \frac{k \pi}{n} \neq 0$ we have $\Delta \neq 0$ and $\delta=\frac{-\gamma^{2}}{4 \cos ^{2} \frac{k \pi}{n}}$ which yields $\Delta=-\gamma^{2} \tan ^{2} \frac{k \pi}{n}$. Denote by $\sqrt{\Delta}$ the number $\gamma \mathrm{i} \tan \frac{k \pi}{n}$, thus $\sqrt{\Delta} \cos \frac{k \pi}{n}=\gamma \mathrm{i} \sin \frac{k \pi}{n}$ which is equivalent to (10). Now reversing the reasoning from the case (i) - from condition (10) to (8) (without condition (9)) - finishes the proof.

The results obtained above will be now applied to examine the sequences defined by (1).

Theorem 6

If $H: D \rightarrow \mathbb{C}$ is a function given by (4) and $\left(K_{-1}, K_{0}, K_{1}, \ldots\right)$ is a sequence defined in Theorem 3 for which $\gamma=a+d$ and $\delta=b c-a d$, then

$$
\begin{equation*}
H^{m}(x)=\frac{1}{c} \frac{c K_{m} x+d K_{m}+\delta K_{m-1}}{c K_{m-1} x+d K_{m-1}+\delta K_{m-2}}-\frac{d}{c} \quad \text { for } m \in \mathbb{N}_{+}, L(x) \in D \tag{11}
\end{equation*}
$$

Proof. Let $\gamma=a+d, \delta=b c-a d, L(x)=\frac{x}{c}-\frac{d}{c}$ and $S(x)=\left(L^{-1} \circ H \circ L\right)(x)$, $L(x) \in D$. We have

$$
\begin{aligned}
L^{-1}(x) & =c x+d, \\
(H \circ L)(x) & =\frac{a x+b c-a d}{c x}, \\
S(x)=\left(L^{-1} \circ H \circ L\right)(x) & =a+d+\frac{b c-a d}{x}=\gamma+\frac{\delta}{x},
\end{aligned}
$$

for $L(x) \in D$, where $\delta \neq 0$. By Theorem 3 we obtain

$$
S^{m}(x)=\frac{K_{m} x+\delta K_{m-1}}{K_{m-1} x+\delta K_{m-2}} \quad \text { for } m \in \mathbb{N}_{+}, L(x) \in D
$$

Now observe that

$$
S^{m}=L^{-1} \circ H^{m} \circ L \quad \text { for } m \in \mathbb{N}_{+},
$$

thus

$$
H^{m}=L \circ S^{m} \circ L^{-1} \quad \text { for } m \in \mathbb{N}_{+}
$$

which gives (11).

Lemma 3 and Theorem 2 yield

Theorem 7

Let $H: D \rightarrow \mathbb{C}$ be a function defined by (4), $L(x)=\frac{x}{c}-\frac{d}{c}, S(x)=\left(L^{-1} \circ H \circ L\right)(x)$, $L(x) \in D$ and let $n \geq 2$ be a fixed integer. Then every solution of (1) is n-periodic if and only if

$$
S^{n}=\operatorname{Id}_{D}
$$

3. Examples

From the proof of Theorem 5 it follows that condition

$$
\begin{equation*}
\gamma^{2}+4 \delta \neq 0 \text { and } \exists k \in\{1, \ldots, n-1\} \sqrt{\gamma^{2}+4 \delta}=-\gamma i \tan \frac{k \pi}{n} \tag{12}
\end{equation*}
$$

is equivalent to the fact that every sequence $\left(y_{m}\right)_{m \in \mathbb{N}}$ satisfying equation

$$
y_{m+1}=\gamma+\frac{\delta}{y_{m}}
$$

or equation

$$
y_{m+1}=\frac{a y_{m}+b}{c y_{m}+d},
$$

where $a+d=\gamma$ and $b c-a d \neq 0$, is n-periodic with $n \geq 3$.
Moreover, it is easy to find numbers γ, δ satisfying (12) and a, b, c, d - solutions of the system $a+d=\gamma, b c-a d \neq 0$. Namely, for $n=3, \gamma=1, \delta=-1$ (12) is
fulfilled and numbers $a=2, b=-3, c=1, d=-1$ satisfy the system $a+d=1$, $b c-a d=-1$, thus in view of Theorem 5 and Lemma 3 the following functions

$$
S(x)=1+\frac{-1}{x}, \quad H(x)=\frac{2 x-3}{x-1}
$$

fulfil the Babbage equation $\varphi^{3}(x)=x$ (which can be directly checked).
Now let $n=4$, for $\gamma=2, \delta=-2$ (12) holds true. Let $a=3, b=-5, c=1$ and $d=-1$, then $a+d=2, b c-a d=-2$. Similarly as above we get that the mappings

$$
S(x)=2+\frac{-2}{x}, \quad H(x)=\frac{3 x-5}{x-1}
$$

satisfy equation $\varphi^{4}(x)=x$.

References

Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, Matematyka konkretna, PWN, Warszawa.
Koźniewska, J.: 1972, Równania rekurencyjne, PWN, Warszawa.
Kuczma, M.: 1968, Functional Equations in a Single Variable, Monogr. Math. 46, PWNPolish Scientific Publishers, Warszawa.
Levy, H., Lessman, F.: 1966, Równania różnicowe skończone, PWN, Warszawa.
Uss, P.: 1966, Rekurencyjność inaczej, Gradient 2, 102-106.
Wachniccy, K. E.: 1966, O ciągach rekurencyjnych określonych funkcją homograficzną, Gradient 5, 275-288.

Instytut Matematyki
Uniwersytet Pedagogiczny
ul. Podchorażych 2
PL-30-084 Kraków
e-mail jangorowski@interia.pl
e-mail alomnicki@poczta.fm

[^0]: *Iteracje funkcji homograficznej i równanie rekurencyjne zadane funkcją homograficzną 2010 Mathematical Subject Classification: Primary: 26A18; 37B20; 39B22
 Key words and phrases: Iterations of homographic functions, recurrence equation, periodic sequences

