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Iterations of homographic functions and recurrence equations
involving a homographic function∗∗∗

Abstract. The formulas for the m-th iterate (m ∈ N) of an arbitrary homographic
function H are determined and the necessary and sufficient conditions for a solution of
the equation ym+1 = H(ym), m ∈ N to be an infinite n-periodic sequence are given.
Based on the results from this paper one can easily determine some particular solutions
of the Babbage functional equation.

1. Preliminaries

The recurrence equations involving a homographic function where studied in
(Graham, Knuth, Patashnik, 2002). The authors stated that the only known ex-
amples of such equations possessing periodic solutions are

ym+1 = 2i sin πr + 1
ym

, m ∈ N,

where r is a rational number such that 0 ≤ r < 1
2 .

Various approaches to the sequences given by the recurrence equation

ym+1 = H(ym), m ∈ N, (1)

where H is a homographic function may be found in (Koźniewska, 1972; Levy,
Lessman, 1966; Uss, 1966; Wachniccy, 1966).

In this paper we prove formulas determining all solutions of (1). We also give
the necessary and sufficient conditions for a solution of (1) to be periodic.

We also determine some particular solutions of the Babbage functional equa-
tion

ϕm(x) = x, x ∈ X, (2)

where m is an arbitrary fixed integer. Recall that ψn for n ∈ N denotes the n-th
iterate of a function ψ : X → X, i.e. ψ0 = IdX and ψn = ψ ◦ ψn−1 for integer
n ≥ 1.
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Some results concerning (2) may be found in (Kuczma, 1968). In particular
the following

Theorem 1 (Kuczma, 1968, p. 291)
If ϕ is a meromorphic solution of equation (2), then

ϕ(x) = a′x+ b′

c′x+ d′

for some a′, b′, c′, d′ ∈ C.

Theorem 2 (Kuczma, 1968, p. 291)
If L(x) = αx+β, where α 6= 0, then ϕ satisfies (2)if and only if L−1◦ϕ◦L does so.

Theorem 3 (Kuczma, 1968, p. 291)
Let K−1 = 0, K0 = 1, Km = γKm−1 + δKm−2 for m ∈ N+ and let S(x) = γ + δ

x ,
where γ, δ ∈ C and δ 6= 0, then

Sm(x) = Kmx+ δKm−1

Km−1x+ δKm−2
for m ∈ N+. (3)

Let
H(x) := ax+ b

cx+ d
, where a, b, c, d ∈ C, c 6= 0, ad− bc 6= 0 (4)

In the sequel we assume that the domain of H is the set D defined as follows

D :=
⋂

m∈N+

DHm ,

where DHm denotes the domain of Hm and N+ := N\{0}. We also set H0 := IdD.
Let H : D → C be a function given by (4) and let

y0 = x0 and ym+1 = H(ym) for an x0 ∈ D and m ∈ N.

Notice that
ym = Hm(x0) m ∈ N (5)

and x0, H(x0), H2(x0), . . . ,Hm−1(x0) ∈ D.
Based on the theory of recurrence linear equations of order 2 with constant

coefficients (Koźniewska, 1972, p. 59) we get

Lemma 1
Let K−1 = 0, K0 = 1, Km = γKm−1 + δKm−2 for m ∈ N+, δ 6= 0 and let
∆ = γ2 + 4δ. Then for m ∈ N ∪ {−1},

1o Km = (m+ 1)
(
γ
2
)m, if ∆ = 0,

2o Km = 1√
∆

((
γ+
√

∆
2
)m+1 −

(
γ−
√

∆
2
)m+1

)
, if ∆ 6= 0,
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where
√

∆ denotes one of the complex square roots of ∆.

A consequence of Lemma 1 is

Lemma 2
If K−1 = 0, K0 = 1, Km = γKm−1 + δKm−2 for m ∈ N+, δ 6= 0, γ, δ ∈ R and
∆ = γ2 + 4δ, then for m ∈ N ∪ {−1},

1o Km = (m+ 1)
(
γ
2
)m, if ∆ = 0,

2o Km = 1√
∆

((
γ+
√

∆
2
)m+1 −

(
γ−
√

∆
2
)m+1

)
, if ∆ > 0,

3o Km = (
√
−δ)m cos mπ2 , if γ = 0 and ∆ < 0,

4o Km = (
√
−∆)m(cosmψ + cotψ sinmψ), if γ 6= 0 and ∆ < 0,

where ψ is the principal value of an argument of the complex number γ
2 + i

√
−∆
2 .

2. Periodic solutions of the recurrence equation
Definition 1
An infinite sequence (ym)m∈N is called periodic with period n (or n-periodic), where
n ∈ N, n ≥ 1, if ym+n = ym for every m ∈ N.

Consider equation (1) with the initial condition y0 = x0, where H : D → C is
a function defined by (4) and x0 ∈ D. By (5) we get

Lemma 3
Let H : D → C be a function defined by (4) and let n ≥ 2 be a fixed integer. Every
solution of (1) is periodic with period n if and only if

Hn = IdD. (6)

Proof. Assume that for some integer n ≥ 2 equation (6) holds, then by (5)
for every m ∈ N we have

ym+n = Hm+n(x0) = Hm(Hn(x0)) = Hm(x0) = ym,

where y0 = x0 ∈ D. For the converse suppose that every solution of (1) is n-
periodic. Let x0 ∈ D, so Hm(x0) ∈ D for every m ∈ N. Put ym := Hm(x0),
m ∈ N. The sequence (ym)m∈N satisfies (1), so it is n-periodic. Thus

Hn(x0) = yn = y0 = H0(x0) = x0.

Hence (6) holds.

Observe that Lemma 3 holds true if H is an arbitrary function with a proper
domain satisfying (2).
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Theorem 4
Let S : D′ → C be a function defined as S(x) = γ − δ

x , where γ, δ ∈ C, δ 6= 0 and
D′ :=

⋂
m∈N+

DSm , where DSm denotes the domain of Sm. Every sequence (ym)m∈N

satisfying the following recurrence relation

ym+1 = S(ym), m ∈ N (7)

is 2-periodic if and only if γ = 0.

Proof. In view of Lemma 3 it follows that every sequence (ym)m∈N satisfying
(7) is 2-periodic if and only if

S2(x) = γ + δx

γx+ δ
= IdD′(x), x ∈ D′.

Which is equivalent to the fact that γ = 0.

Now we prove the following results.

Theorem 5
Let S be as in Theorem 4, ∆ = γ2 + 4δ and let n ∈ N be such that n ≥ 3.

(i) If every sequence (ym)m∈N satisfying (7) is n-periodic, then ∆ 6= 0 and δ =
−γ2

4 cos2 kπ
n

for some k ∈ {1, 2, 3, . . . , n− 1}.

(ii) If k ∈ {1, 2, 3, . . . , n− 1} and γ2 + 4δ 6= 0 and 4δ cos2 kπ
n = −γ2, then every

sequence (ym)m∈N satisfying (7) is n-periodic.

Proof. To show (i) observe that by Lemma 3 we get

Sn(x) = x, x ∈ D′. (8)

By Theorem 3 and Lemma 1, (8) is equivalent to the following conditions

Knx+ δKn−1

Kn−1x+ δKn−2
− xKn−1x+ δKn−2

Kn−1x+ δKn−2
= 0, x ∈ D′,

γKn−1x+ δKn−2x+ δKn−1 −Kn−1x
2 − δKn−2x

Kn−1x+ δKn−2
= 0, x ∈ D′,

Kn−1(−x2 + γx+ δ)
Kn−1x+ δKn−2

= 0, x ∈ D′,

Kn−1 = 0,

∆ 6= 0 and
(
γ +
√

∆
2

)n
=
(
γ −
√

∆
2

)n
,

∆ 6= 0 and (γ +
√

∆)n = (γ −
√

∆)n,

∆ 6= 0 and ∃ k ∈ {1, . . . , n− 1} : γ+
√

∆ = (γ−
√

∆)
(

cos 2kπ
n

+i sin 2kπ
n

)
. (9)
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Now notice that

γ +
√

∆ = (γ −
√

∆)
(

cos 2kπ
n

+ i sin 2kπ
n

)
is equivalent to the following conditions

√
∆
(

1 + cos 2kπ
n

+ i sin 2kπ
n

)
= γ

(
cos 2kπ

n
+ i sin 2kπ

n
− 1
)
,

2
√

∆ cos kπ
n

(
cos kπ

n
+ i sin kπ

n

)
= 2γ sin kπ

n

(
i cos kπ

n
− sin kπ

n

)
,

2
√

∆ cos kπ
n

(
cos kπ

n
+ i sin kπ

n

)
= 2γi sin kπ

n

(
cos kπ

n
+ i sin kπ

n

)
. (10)

Thus condition (9) is equivalent to

∆ 6= 0 and ∃ k ∈ {1, . . . , n− 1}
√

∆ cos kπ
n

= γi sin kπ
n
,

∆ 6= 0 and ∃ k ∈ {1, . . . , n− 1}
√

∆ = γi tan kπ
n
,

∆ 6= 0 and ∃ k ∈ {1, . . . , n− 1} ∆ = −γ2 tan2 kπ

n
,

∆ 6= 0 and ∃ k ∈ {1, . . . , n− 1} δ = −γ2

4 cos2 kπ
n

,

which completes the proof of (i).
For the implication (ii) consider two cases:

a. n is an even number and k = n
2 ,

b. n is an even number and k 6= n
2 or n is odd and k ∈ {1, 2, 3, . . . , n− 1}.

In the case a, we get γ = 0 and according to Theorem 4 every sequence satisfying
(7) is 2-periodic and hence n-periodic.

For the case b, notice that for every k ∈ {1, 2, 3, . . . , n−1}, cos kπn 6= 0 we have
∆ 6= 0 and δ = −γ2

4 cos2 kπ
n

which yields ∆ = −γ2 tan2 kπ
n . Denote by

√
∆ the number

γi tan kπ
n , thus

√
∆ cos kπn = γi sin kπ

n which is equivalent to (10). Now reversing
the reasoning from the case (i) – from condition (10) to (8) (without condition
(9)) – finishes the proof.

The results obtained above will be now applied to examine the sequences
defined by (1).

Theorem 6
If H : D → C is a function given by (4) and (K−1,K0,K1, . . .) is a sequence defined
in Theorem 3 for which γ = a+ d and δ = bc− ad, then

Hm(x) = 1
c

cKmx+ dKm + δKm−1

cKm−1x+ dKm−1 + δKm−2
− d

c
for m ∈ N+, L(x) ∈ D. (11)
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Proof. Let γ = a+d, δ = bc−ad, L(x) = x
c −

d
c and S(x) = (L−1 ◦H ◦L)(x),

L(x) ∈ D. We have

L−1(x) = cx+ d,

(H ◦ L)(x) = ax+ bc− ad
cx

,

S(x) = (L−1 ◦H ◦ L)(x) = a+ d+ bc− ad
x

= γ + δ

x
,

for L(x) ∈ D, where δ 6= 0. By Theorem 3 we obtain

Sm(x) = Kmx+ δKm−1

Km−1x+ δKm−2
for m ∈ N+, L(x) ∈ D.

Now observe that
Sm = L−1 ◦Hm ◦ L for m ∈ N+,

thus
Hm = L ◦ Sm ◦ L−1 for m ∈ N+,

which gives (11).

Lemma 3 and Theorem 2 yield

Theorem 7
Let H : D → C be a function defined by (4), L(x) = x

c −
d
c , S(x) = (L−1◦H◦L)(x),

L(x) ∈ D and let n ≥ 2 be a fixed integer. Then every solution of (1) is n-periodic
if and only if

Sn = IdD.

3. Examples

From the proof of Theorem 5 it follows that condition

γ2 + 4δ 6= 0 and ∃ k ∈ {1, . . . , n− 1}
√
γ2 + 4δ = −γi tan kπ

n
(12)

is equivalent to the fact that every sequence (ym)m∈N satisfying equation

ym+1 = γ + δ

ym

or equation

ym+1 = aym + b

cym + d
,

where a+ d = γ and bc− ad 6= 0, is n-periodic with n ≥ 3.
Moreover, it is easy to find numbers γ, δ satisfying (12) and a, b, c, d - solutions

of the system a + d = γ, bc − ad 6= 0. Namely, for n = 3, γ = 1, δ = −1 (12) is
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fulfilled and numbers a = 2, b = −3, c = 1, d = −1 satisfy the system a + d = 1,
bc− ad = −1, thus in view of Theorem 5 and Lemma 3 the following functions

S(x) = 1 + −1
x
, H(x) = 2x− 3

x− 1

fulfil the Babbage equation ϕ3(x) = x (which can be directly checked).
Now let n = 4, for γ = 2, δ = −2 (12) holds true. Let a = 3, b = −5, c = 1

and d = −1, then a + d = 2, bc − ad = −2. Similarly as above we get that the
mappings

S(x) = 2 + −2
x
, H(x) = 3x− 5

x− 1
satisfy equation ϕ4(x) = x.

References
Graham, R. L., Knuth, D. E., Patashnik, O.: 2002, Matematyka konkretna, PWN,

Warszawa.
Koźniewska, J.: 1972, Równania rekurencyjne, PWN, Warszawa.
Kuczma, M.: 1968, Functional Equations in a Single Variable, Monogr. Math. 46, PWN-

Polish Scientific Publishers, Warszawa.
Levy, H., Lessman, F.: 1966, Równania różnicowe skończone, PWN, Warszawa.
Uss, P.: 1966, Rekurencyjność inaczej, Gradient 2, 102-106.
Wachniccy, K. E.: 1966, O ciągach rekurencyjnych określonych funkcją homograficzną,

Gradient 5, 275-288.

Instytut Matematyki
Uniwersytet Pedagogiczny
ul. Podchorążych 2
PL-30-084 Kraków
e-mail jangorowski@interia.pl
e-mail alomnicki@poczta.fm


	Preliminaries
	Periodic solutions of the recurrence equation
	Examples

