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Abstract. A method is presented for creating a problem, solving it, and
confirming that the solution is correct. The problem is to analyze a quadratic
equation in two variables, in order to identify and draw, in its place – that is,
without rotating the coordinate system – the central conic section that the
equation defines. One creates the problem by choosing conjugate diameters
for the conic that are not orthogonal; the solution requires finding orthogonal
conjugate diameters, namely the axes. One can do this by the method
of Apollonius, which is to intersect the conic with a concentric circle; the
resulting four points are the vertices of a rectangle, whose sides are parallel
to the axes. Along the way, by completing squares, one has found another
pair of conjugate diameters, one of these being parallel to one of the axes of
coordinates (or indeed to any line that one chooses). By sketching all three
pairs of diameters, with their endpoints, one can see by inspection whether
one’s computations are likely to have been correct. Those computations in
turn serve to confirm the general formulas that are found, in terms of the
coefficients of the equation, for the endpoints of the axes of an arbitrary
central conic.

1. Introduction

Perhaps in any subject, but certainly in mathematics, one must learn to evalu-
ate one’s own work. It is also good to be able to come up with one’s own exercises.

For example, in linear algebra, one may be taught an algorithm for finding the
inverses of matrices. One may also be shown a proof that the algorithm works. One
ought to learn also to confirm one’s result with any particular invertible matrix
A, as by checking that indeed A · A−1 = I. One does well to learn also to create
new invertible matrices by applying elementary row and column operations to I;
for then one can set oneself the problem of finding the inverses of those matrices
without considering where they came from.
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We present here a similar example, developed as a project for students of
analytic geometry under the restrictions of the Covid-19 pandemic. The project
needs only high-school algebra, but getting the computations correct is a challenge.
The project asks us

1) to create our own problem,
2) to solve it,
3) to confirm our solution.

That third step shows that the computations are actually meaningful.

1.1. Creation

We create our problem in the following steps.
A. In a rectangular coordinate system, we select points (a, b) and (c, d) with

integral coordinates so that
ad − bc ̸= 0 (1)

and also
ac + bd ̸= 0. (2)

Thus, considered as vectors, (a, b) and (c, d) are linearly independent, but
not orthogonal.

B. We select a point (e, f), different from the origin, but also with integral
coordinates.

C. By choosing a value for ±1, we form an equation(
d(x − e) − c(y − f)

)2 ±
(
b(x − e) − a(y − f)

)2 − (ad − bc)2 = 0. (3)

D. We multiply out (3) to obtain

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. (4)

Our problem now is to understand the curve defined by (4). Let us say precisely
what this means.

1.2. Solution

Our curve is a central conic, namely an hyperbola or ellipse, depending on
whether we have chosen the coefficient ±1 on the second square in (3) to be −1
or 1. The conic is non-degenerate, by (1). The conic is not a circle, by (2); this is
true, even though the vectors may have the same magnitude, as they do in Figure
1. To keep the problem challenging, we may make the additional requirements

|a| = |c| ⇒ |b| ≠ |d| , |a| = |d| ⇒ |b| ≠ |c| ,

which (along with the non-orthogonality) ensure that (a, b) and (c, d) make differ-
ent angles with the coordinate axes, if the vectors are equal in magnitude.

We could also just require the vectors (a, b) and (c, d) to differ in magnitude.
In any case, the center of our conic is (e, f), and one thing to do will be to recover
this from (4).
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Figure 1: Ellipse defined by the positive case of (3)

In the terminology of Apollonius (Apollonius of Perga, 1998, p. 4), our conic
has conjugate diameters in the directions of (a, b) and (c, d) respectively. Such
diameters are drawn in Figure 1, and we shall talk more about them in § 2. We
cannot recover the original conjugate diameters from (4), because, as Apollonius
shows, every line through the center of the conic is one of a pair of conjugate
diameters. Our equation (4) singles out no particular such line.

Our original choice of conjugate diameters can be inferred from (3), but we
erase this information when we obtain (4). This new equation still defines the same
conic that (3) does. As Apollonius also shows, because our conic is not a circle, it
has a unique pair of conjugate diameters that are mutually orthogonal. These are
the axes of the conic, and we want to find these too.

In the most precise sense, conjugate diameters are not just lines, but line
segments. The conjugate diameters that we start with have endpoints (e, f)±(a, b)
and (e, f)± (c, d) respectively. The endpoints of both diameters lie on the conic, if
it is an ellipse. If it is an hyperbola, as in Figure 2, then the endpoints of only one
diameter lie on it: Apollonius calls this the transverse diameter, while the other is
the upright diameter. The endpoints of the latter lie on the conjugate hyperbola,
whose equation we can obtain from (3) by interchanging (a, b) and (c, d) or by
changing the sign on (ad − bc)2.

A complete solution of our problem will give us, from (4) alone,
• the center (e, f) of our conic,
• the directions of its axes,
• the endpoints of the axes,
• the specification of whether the conic is an ellipse or hyperbola, and
• in the case of the hyperbola, the specification of which axis is transverse.

Solving our problem thus means obtaining the point (e, f), along with orthogonal
vectors (α, β) and (γ, δ) for which the curve given by (4) is given also by(

δ(x − e) − γ(y − f)
)2 ±

(
β(x − e) − α(y − f)

)2 = (αδ − βγ)2. (5)
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Figure 2: Hyperbola defined by the negative case of (3)

If ±1 is positive, the conic is an ellipse; if negative, an hyperbola, and the transverse
axis is in the direction of (α, β).

We shall work out numerical examples in §§ 2 and 3, and a general solution,
with formulas for α, β, γ, and δ, in § 4. The specific examples will help to confirm
that the general formulas are correct.

In outline, our method of solution is as follows.
1 (completion of squares) Defining

∆ = 4AC − B2 (6)

and multiplying (4) by 4A∆, we apply the high-school technique of complet-
ing squares to obtain

∆(2Ax + By + D)2 + (∆y + 2AE − BD)2 + 4A∆F ′ = 0 (7)

for some F ′. Thus our curve has conjugate diameters, one of them horizontal,
given respectively by

∆y + 2AE = BD, 2Ax + By + D = 0. (8)

Their intersection is the center, (e, f).
2 (intersection with circle) The horizontal diameter of our conic is also the

diameter of a circle. As Apollonius shows (Apollonius of Perga, 1998, II.47,
pp. 156–7), that circle (or any circle, concentric with the conic, that inter-
sects the conic at all) intersects the conic in the four vertices of a rectangle,
whose sides are parallel to the axes of the conic. We find those vertices
using another high-school technique, namely that of “solving any pair of si-
multaneous second-degree equations of which one is homogeneous” (Weeks,
Adkins, 1971, pp. 394–5).

3 (identification of axes) The sides of our rectangle will be parallel to the axes
of the curve. We compute what those axes are and ultimately obtain (5).
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1.3. Confirmation

If we are working with actual numbers, then each step of the solution gives us
information that we can plot on graph paper:

1) center and a pair of conjugate diameters of our curve, as given by (8);
2) four points of the curve, where a concentric circle intersects it;
3) the axes of the curve.

Also, though we are working with (4), we have not forgotten (3), which also gives
us a center and a pair of conjugate diameters to plot. If we have made a mistake
along the way, it ought to be obvious in the graphs, if not in the directions of the
conjugate diameters, then in their lengths. That was my experience, at least, in
working out examples by hand.

Another method for checking our work is actually multiplying out what we
have for (5), to see that we get (4). We can still make mistakes here though,
especially since we know the answer that we want to get.

The coordinates of the axes of our conic will involve radicals within radicals;
thus we may use an electronic calculator to approximate the coordinates. To check
my students’ work, in LATEX (using also the packages calc, ifthen, pstricks,
pst-eucl, and pst-plot) I wrote a command that, given (a, b), (c, d) and (e, f),
draws the graph of (3) while printing out (α, β) and (γ, δ) in (5) exactly, as in the
formulas to be found in § 4. It would be a good thing if students could come up
with such a program for themselves, if they did not want to do computations by
hand with specific numbers as in §§ 2 and 3.

Instead, a student may do those computations, starting with (3), multiplying
out to get (4), completing squares to get (7), and finally coming up with an
equation (5). The student may ask, “Is this right?” We can respond, “See for
yourself, by sketching the curves defined by what you have found for (7) and (5);
they should be the same as for (3).”

Teaching a different subject, Robert Pirsig faced a similar challenge. He had
to answer students who asked, while turning in an assignment, “Is this what you
want?” Pirsig described the situation in a letter (Pirsig, 1961); in Zen and the Art
of Motorcycle Maintenance, he quoted a passage from the letter that concludes,
“All those [instructors of English composition] who feel that quality of writing
does exist . . . can benefit by the the following method of teaching pure quality
in writing without defining it” (Pirsig, 1974, ch. 18, p. 191). The method involves
having students assess one another’s work.

What Pirsig wanted, as an English teacher, was for students to learn to write
what they wanted. In the end, this would somehow be what everybody else wanted,
which was quality.

In mathematics, an essential part of quality is truth, or correctness if you
prefer. We take this to be universal. Everybody who takes an interest should be
able to confirm whether

• a given proof does yield a purported theorem,
• calculated numbers do satisfy the conditions that they are intended to satisfy.

The project worked out here is supposed to help teach that lesson.
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1.4. Analysis

Our project involves a procedure, which we sketched above, and which we shall
spell out in detail in the later sections, for finding center and axes of a central
conic defined by an equation (4), derived from (3) under conditions (1) and (2).
In principle, as we have said, the procedure needs only high-school knowledge:

• completion of squares,
• solution of easy cases of simultaneous quadratic equations,
• the rectangular coordinatization of the Euclidean plane.

Strictly speaking, we need not know the theory of conjugate diameters of a central
conic section; the project itself can be used to establish this theory.

However, there is already a standard procedure, described for example in
(Nelson, Folley, Borgman, 1949, pp. 162–6) and (Vygodsky, 1975, pp. 85–95, 105–
9), for finding center and axes of a central conic. It requires more theory, especially
in relating different rectangular coordinatizations of the same plane. Matrix alge-
bra is useful here, and even calculus. We review this now, but shall not need it
later, so the reader can also skip ahead to § 2.

Let us denote the left-land side of (4) by Φ(x, y).
• To find the center of the conic defined by (4), we can translate the axes of

coordinates so that the linear part Dx + Ey of the equation disappears; the new
origin of coordinates is then the center of the conic. To find this center precisely,
we compute

Φ(x + e, y + f) = Ax2 + Bxy + Cy2 + F ′

+ (2Ae + Bf + D)x + (Be + 2Cf + E)y

for some constant F ′. The center of the conic is that point (e, f), in the original
coordinate system, for which the coefficients 2Ae + Bf + D and Be + 2Cf + E
on x and y vanish. Thus, as noted in (Ayoub, 1993), (e, f) is the solution of the
system

∂xΦ = 0, ∂yΦ = 0.

These two lines define diameters of the conic that cut it (or its conjugate, if the
conic is an hyperbola) where the tangent to the conic is horizontal and vertical
respectively. Thus the diameters are not conjugate unless they are already axes,
since the tangent where one diameter cuts a central conic is parallel to the conju-
gate diameter. In any case, having found the center (e, f), if we make a coordinate
translation by defining

(x, y) = (x′ + e, y′ + f),
(x′, y′) = (x − e, y − e),

(9)

and then we cover our tracks by erasing the primes, we obtain in place of (4) the
equation

Ax2 + Bxy + Cy2 + F ′ = 0 (10)

in the translated coordinate system.
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• To find the axes of the conic, we can rotate the axes of coordinates so that
the mixed term Bxy in (4) disappears; the new axes of coordinates are parallel to
the axes of the conic. To find the slopes of the axes of the conic in the original
coordinate system, we compute

Φ(x cos φ − y sin φ, x sin φ + y cos φ) = A′x2 + C ′y2 + D′x + E′y + F

+
(
B cos(2φ) − (A − C) sin(2φ)

)
xy

for some constants A′, C ′, D′ and E′. In the original coordinate system, the
slopes of the axes of the conic are the two values of tan φ for which the coefficient
B cos(2φ) − (A − C) sin(2φ) on xy vanishes, that is,

tan(2φ) = B

A − C
.

By the double-angle formula for tangents, this equation yields

B tan2 φ + 2(A − C) tan φ − B = 0. (11)

It is noted in (Ayoub, 1993) that we get this equation if we convert (10) to polar
coordinates and differentiate with respect to angle, in order to find the angles that
maximize or minimize the radius. In any case, if we make a coordinate rotation
by defining

(x, y) = (x′ cos φ − y′ sin φ, x′ sin φ + y′ cos φ),
(x′, y′) = (x cos φ + y sin φ, x sin φ − y cos φ),

(12)

and again we cover our tracks by erasing the primes, we obtain in place of (4) the
equation

A′x2 + C ′y2 + D′x + E′x + F = 0
in the rotated coordinate system.

The foregoing procedures (which we can apply in either order) for finding the
center and the axial slopes of a central conic are analytic in the original sense of
Pappus of Alexandria (Thomas, 1951, p. 597):

in analysis we suppose that which is sought to be already done, and
we inquire what it is from which this comes about, and again what is
the antecedent cause of the latter, and so on until, by retracing our
steps, we light upon something already known or ranking as a first
principle . . .

In our case, in order to “suppose that which is sought to be already done,” we use
the place-holding letters e, f , and φ in the procedures sketched above.

The analytic method may be essential to mathematics. It would seem to
be what Descartes calls “true mathematics” in the fourth of the Rules for the
Direction of the Mind (Descartes, 1985, pp. 18–9):

one can even see some traces of this true mathematics, I think, in
Pappus and Diophantus . . . But I have come to think that these
writers themselves, with a kind of pernicious cunning, later suppressed
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this mathematics . . . They may have feared that their method, just
because it was so easy and simple, would be depreciated if it were
divulged . . . In the present age some very gifted men have tried to
revive this method, for the method seems to be none other than the
art which goes by the outlandish name of ‘algebra’ . . .

Descartes wrote that in 1628; in 1637, he would publish the Geometry (Descartes,
1954), which seems to have initiated our practice of defining curves by equations
that use letters x and y as variables, and letters from the beginning of the alphabet
as constants.

The present work is all about such equations, especially (3). Our purpose
is to connect the equation directly with the conic that it defines. We want to
understand the conic in its place, with respect to its given coordinate system.
Specifically, we want to rewrite (3) as (5), which reveals the axes. In order to find
the vectors (α, β) and (γ, δ) that feature in (5), after the rewriting that turns (3)
into (4), and after the translation that turns the latter into (10), we still must
somehow solve the last equation simultaneously with either of y = x tan φ and
x + y tan φ = 0. We can do this directly, as we are going to do later; or we can
rotate the coordinate axes so that (10) becomes

A′x2 + C ′y2 + F ′ = 0. (13)

When we rotate back, we get

A′(x cos φ + y sin φ)2 + C ′(x sin φ − y cos φ)2 + F ′ = 0.

Then

(α, β) = (
√

A′ · cos φ,
√

A′ · sin φ),
(γ, δ) = (

√ |C ′| · sin φ, −√ |C ′| · cos φ).

In § 4, we are going to find A′, C ′, sin φ, and cos φ in terms of the coefficients of
(4).

1.5. Invariants

In fact we are going to find A′, C ′, sin φ, and cos φ in terms of A, B, and C in
(4), under the assumption that (4) is the same as (3); for in this case, F ′ in (10) will
be − |∆| /4, where ∆ is as in (6). One can just check this by computation; we shall
do the computation now, in the process of clarifying the changes of coordinates
that we have just discussed. Again though, none of this is needed for carrying out
the project that is our main subject.

We can write the left-hand side of (4) as a matrix product, as follows; see for
example (Pettofrezzo, 1978, p. 104):

Ax2 + Bxy + Cy2 + Dx + Ey + F =
(
x y 1

)
· M3 ·

(
x y 1

)T
,

where

M3 =

 M2
D/2
E/2

D/2 E/2 F

 ,
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where
M2 =

(
A B/2

B/2 C

)
.

The translation (9) and rotation (12) are given by(
x y 1

)
=
(
x′ y′ 1

)
· Λ,

where Λ is respectively(
I 0

e f 1

)
,

(
R 0
0 1

)
,

where

I =
(

1 0
0 1

)
, R =

(
cos φ sin φ

− sin φ cos φ

)
.

In every case, det Λ = 1 and det R = 1. This shows the invariance of det M3 and
det M2, noted for example in (Pamfilos, n.d., §§ 2–4) and (Vygodsky, 1975, pp.
99–102), under translation and rotation of the coordinate system. In the notation
of (6), which we shall continue to use, we have

4 det M2 = ∆. (14)

As a special case of the invariance just mentioned, det M3 and det M2 stay the
same, whether we compute them for (3) or for

(dx − cy)2 ± (bx − ay)2 − (ad − bc)2 = 0, (15)

and whether we compute them for (4), (10), or (13). The determinants do not
stay the same, if an equation is multiplied by a positive constant other than unity.
However, if det M2 ̸= 0, then (det M3)2/(det M2)3 does stay the same; it is thus
an invariant, not only of an equation, but of the conic that it defines.

To accomplish the translation that gives us (10) in the first place, we require
of the corresponding Λ that

Λ · M3 · ΛT =
(

M2 0
0 F ′

)
. (16)

The conditions on e, f , and F ′ are(
e f

)
· M2 +

(
D/2 E/2

)
=
(
0 0

)
,

det M2 · F ′ = det M3, (17)

and, as shown for example in (Pamfilos, n.d., §§ 10, 11), these conditions are
satisfiable if det M2 ̸= 0.

Such is the case when (10) is (15), multiplied out, under the nondegeneracy
condition (1). In this case, computing

(dx − cy)2 ± (bx − ay)2 = (d2 ± b2)x2 − 2(cd ± ab)xy + (c2 ± a2)y2, (18)
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we can write (15) as

(
x y 1

)
·

 d2 ± b2 −(cd ± ab) 0
−(cd ± ab) c2 ± a2 0

0 0 −(ad − bc)2

 ·

x
y
1

 = 0. (19)

In the notation of (16) for the present case,

det M2 = det
(

d2 ± b2 −(cd ± ab)
−(cd ± ab) c2 ± a2

)
= ±(ad − bc)2 = ∓F ′. (20)

Using (14), we can now write (15), and thus (19), in the form

Ax2 + Bxy + Cy2 − |∆| /4 = 0. (21)

We shall use this in the general computations of § 4. Meanwhile, from (17) and
(20),

∓F ′ = F ′2

∓F ′ = (det M3)2

(det M2)3 , (22)

which is the conic invariant that we mentioned; also, the ambiguous sign here is
opposite the sign of det M2, and this sign (which is that of ∆) is a conic invariant.

When we rotate the coordinate system so as to eliminate the mixed term from
(15), we get (13), where diag(A′, C ′, F ′) is the diagonalization (by means of the
appropriate matrix Λ) of the square matrix in (19). Thus, in particular, A′ and
C ′ are the eigenvalues of M2. Another way to see this is shown in (Ayoub, 1993):
when we multiply (11) by B/4 and replace tan φ by 2(λ − A)/B, we obtain

(λ − A)(λ − C) − B2/4 = 0,

which is the characteristic equation of M2, and the roots are A′ and C ′.
In (13) then, by (22), we have

F ′ = ∓A′C ′.

Assuming A′ > 0, we can write (13) as

(sx)2 ± (ry)2 = (rs)2

for some positive r and s. Dividing by (rs)2 gives us

x2

r2 ± y2

s2 = 1, (23)

the “standard” form of the equation of an ellipse or hyperbola, as in (Nelson,
Folley, Borgman, 1949, pp. 107, 115) or (Vygodsky, 1975, pp. 59, 65).
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2. Example: ellipse

2.1. Creation

In equation (3), if we let ±1 be 1, and we plug in the values

(a, b) = (5, 1), (c, d) = (2, 4), (e, f) = (4, 1),

we obtain the equation(
4(x − 4) − 2(y − 1)

)2 +
(
(x − 4) − 5(y − 1)

)2 = (5 · 4 − 1 · 2)2. (24)

This equation is satisfied by (4, 1) ± (5, 1) and (4, 1) ± (2, 4), which are A, A′, B,
and B′ in Figure 3, where (4, 1) itself is O. We can rewrite (24) as

0 2 4 6 8 10−2
0

−2

−4

2

4

6

A

A′

B

B′

O
bc

bc

bc

bc

bc

Figure 3: Ellipse, conjugate diameters, bounding parallelogram

22 · (2x − y − 7)2 + (x − 5y + 1)2 = 182. (25)

In passing from (24) to (25), we have not lost any information. Indeed, by equating
the two squared linear terms to zero, we obtain the equations

x − 5y + 1 = 0, 2x − y − 7 = 0,

which define the lines AA′ and BB′ in Figure 3; these lines intersect at O. We are
thus able to recover (24) from (25). We multiply out either equation to obtain

17x2 − 26xy + 29y2 − 110x + 46y − 127 = 0. (26)

We have thus created for ourselves the problem of figuring out the curve defined
by (26).
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2.2. On diameters

In the terminology of Apollonius already mentioned in the Introduction, the
lines AA′ and BB′ are conjugate diameters of the curve defined by (24), (25),
and (26). The point O is the center of the curve (Apollonius of Perga, 1998, p.
36). This means in particular that all chords of the curve that are parallel to one
of the two diameters are bisected by the other one. In more detail, we have the
following.

1. For all nonzero t, the line AA′ is equidistant from the parallel lines given by

x − 5y + 1 = t, x − 5y + 1 = −t.

2. For all nonzero s, the line BB′ is equidistant from the parallel lines given by

2x − y − 7 = s, 2x − y − 7 = −s.

3. In case the intersection point of one of the first pair of parallels with one of
the second pair of parallels lies on the curve defined by (24), we have

22s2 + t2 = 182,

and this condition depends only on |s| and |t|.
If the conjugate diameters AA′ and BB′ were at right angles to one another, then
they would be axes of the curve, and the curve itself would be an ellipse, if such
a curve is by definition a curve that has a standard equation as in (23). The
conjugate diameters are not in fact at right angles; still, we can sketch the curve
as in Figure 3.

By one account (Vygodsky, 1975, pp. 58–9), an ellipse is a circle that has
undergone uniform compression at right angles to a particular axis of compression.
We are going to find such an axis for our curve.

By the account of Apollonius, suitably interpreted, our curve is already an
ellipse, because it has conjugate diameters in the sense defined; Apollonius proves
that every line through the center is a diameter that has a conjugate, and that in
one case that conjugate is orthogonal. We are going to show this independently.

2.3. Solution

2.3.1. Completion of squares

After multiplying (26) by 17 for convenience and rearranging the terms, placing
first the terms in x, we obtain

(17x)2 − 2 · 17 · 13xy − 2 · 17 · 55x + 17 · (29y2 + 46y) − 17 · 127 = 0. (27)

Now we complete the squares. First, for the terms in x, we have

(17x)2 − 2 · 17 · 13xy − 2 · 17 · 55x = (17x − 13y − 55)2 − (13y + 55)2.
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We plug this into (27) and complete the square in the terms that are in y but not
x:

− (13y + 55)2 + 17 · (29y2 + 46y)
≡ (−169 + 493)y2 + (−1430 + 782)y − 3025)
≡ 324y2 − 648y − 3025
≡ 182(y2 − 2y) − 3025
≡ 182(y − 1)2 − (324 + 3025).

Since 324 + 3025 = 3349 = 17 · 197 and

197 + 127 = 324 = 182,

remembering that we multiplied (26) by 17 to get (27), we can now write the
former as

(17x − 13y − 55)2

17 + 18(y − 1)2

17 = 182. (28)

As from (25), so from (28) we can read off the equations of a pair of conjugate
diameters. These equations are

y − 1 = 0, 17x − 13y − 55 = 0.

The new conjugate diameters are still not orthogonal, but they still intersect at
(4, 1), and thus we have recovered the center O. When we make the substitution

(x, y) = (x′ + 4, y′ + 1)

and then erase the primes, (28) becomes(
x

√
17 − 13y

√
17

17

)2
+
(

18y
√

17
17

)2
= 182. (29)

From this we extract the equations

y = 0, 17x − 13y = 0

of a pair of conjugate diameters, along with their endpoints,(±18
√

17
17 , 0

)
,

(±13
√

17
17 , ±√

17
)

,

which are about ±(4.37, 0) and ±(3.15, 4.12) and are the points C, C ′, D, and D′

in Figure 4; they are where the conjugate diameters meet the curve, and we can
also just read them from (29), as we read ±(a, b) and ±(c, d) from (15), because

det
(

18
√

17/17 0
13

√
17/17

√
17

)
= 18.
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Figure 4: Ellipse with horizontal diameter

2.3.2. Intersection with circle

The circle that shares with our curve the horizontal diameter C ′C as in Figure
5 is given by

17x2 + 17y2 = 182. (30)
We solve this simultaneously with

17x2 − 26xy + 29y2 = 182, (31)

which is what (26) must be after our coordinate change. From our solution of (30)
with (31), we obtain the second-degree homogeneous equation

17x2 − 26xy + 29y2 = 17x2 + 17y2,

which reduces successively to

29y2 − 26xy = 17y2,

12y2 − 26xy = 0,

y(6y − 13x) = 0.

This defines two lines through the center of the circle, meeting it and the original
curve at four points, which must be the vertices of a rectangle, namely CEC ′E′

in Figure 5. If we want to plot them to check our work, since

62 + 132 = 205, (32)

the points E and E′ are (±6 · 18
√

17
17

√
205 ,

±13 · 18
√

17
17

√
205

)
,

which are about ±(1.83, 3.96); but we can plot these points also just by drawing
the circle given by (30) and the line through O with slope 13/6.



Central Conics Left in Place [141]

C

C ′

D

D′

E

E′

O

C

C ′
bc bcbc

bc

bc

bc

bc

Figure 5: Ellipse and concentric circle

2.3.3. Identification of axes

For the sake of finding the axes of our ellipse, we can work with a circle of
more convenient radius, noting the following in turn.

1. The lines CC ′ and EE′ meet the circle that has center O and radius
√

205
at ±(

√
205, 0) and ±(6, 13).

2. The slopes of CE and C ′E are 13/(6 ∓ √
205).

3. The product of these slopes is −1.
Being parallel to CC ′ and EE′ respectively, the bisectors of angles C ′OE and
COE are given accordingly by

13x = (6 ∓ √
205)y. (33)

Solving this simultaneously with (29) will yield the coordinates of F , F ′, G, and G′

in Figure 6, and then we shall have nearly solved our problem, because, by Propo-
sition 47 of Book II of the Conics of Apollonius, already mentioned (Apollonius
of Perga, 1998, pp. 156–7), FF ′ and GG′ are the axes of our ellipse.

Multiplying (29) for convenience by 17 · 132, we obtain

(17 · 13x − 132y)2 + 132 · 182y2 = 17 · 132 · 182.

Replacing 13x with (6 ∓ √
205)y as given by (33) yields

17 · 132 · 182 =
((

17 · (6 ∓ √
205) − 132)2 + 132 · 182

)
y2

=
(
(67 ± 17

√
205)2 + 132 · 182)y2

= (672 + 132 · 182 + 172 · 205 ± 2 · 17 · 67
√

205)y2.

 (34)

Since, as it turns out,
672 + 132 · 182 = 172 · 205, (35)
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Figure 6: Ellipse and axes

we can rewrite (34) as

17 · 132 · 182 = (2 · 172 · 205 ± 2 · 17 · 67
√

205)y2.

Eliminating the common factor 17, we obtain

132 · 182 = 2
√

205 · (17
√

205 ± 67)y2

and then, by (35) again,

y2 = 17
√

205 ∓ 67
2
√

205 . (36)

It may not have been obvious that the simplification of (34) that is facilitated
by (35) would be possible. However, if one now started over with different points
A, B, and O, following the example of the present computations, one would have
a similar simplification. One can see this by sticking with the original literal
constants in (4), as we shall do in § 4. Meanwhile, using numerical constants
allows us to check our work by graphing.

We continue with that work. From (36), using (33), we obtain

x2 = (
√

205 ∓ 6)2(17
√

205 ∓ 67)
132 · 2

√
205 .

We reduce this, using (32), to

x2 = (
√

205 ∓ 6)(17
√

205 ∓ 67)
(
√

205 ± 6) · 2
√

205 . (37)
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To simplify this, we can use

17
√

205 ∓ 67 = (
√

205 ± 6)(23 ∓ √
205),

29
√

205 ∓ 243 = (
√

205 ∓ 6)(23 ∓ √
205).

(38)

Now (37) becomes

x2 = 29
√

205 ∓ 243
2
√

205 . (39)

Keeping in mind that 6 <
√

205 in (33), we obtain the coordinates of F , F ′, G,
and G′ from (39) and (36) as(

±
√

29
√

205 − 343
2
√

205 , ∓
√

17
√

205 − 67
2
√

205

)
,(

±
√

29
√

205 + 343
2
√

205 , ±
√

17
√

205 + 67
2
√

205

)
.

(40)

These are close to ±(1.59, −2.48) and ±(5.15, 3.29), as in Figure 6; in particular,
they seem to lie on the curve sketched originally in Figure 3. In any case, abbre-
viating the actual points F , F ′, G, and G′ as ±(α, β) and ±(γ, δ), we assert that
our curve is given by

(δx − γy)2 + (βx − αy)2 = (αδ − βγ)2 (41)

and therefore by (5) in the original coordinate system.

2.4. Confirmation

Our assertion is theoretically correct by Apollonius: if our curve has axes,
then in principle we have found them as the segments of the lines given by (33)
that have the endpoints in (40). If we made any mistakes in computing the exact
coordinates of any of the points that we have plotted, the errors are likely to be
big enough to be obvious on our paper.

Without relying on Apollonius, we can confirm that (41) is the correct equation
by multiplying out to see that what we arrive at is (31). The work is not that
hard, if we use the factorizations in (38). In particular, first of all,

αδ =
√

(29
√

205 − 343)(17
√

205 + 67)
2
√

205

=
√

(
√

205 − 6)(23 − √
205)(

√
205 − 6)(23 +

√
205)

2
√

205

= (
√

205 − 6)
√

232 − 205
2
√

205 = (
√

205 − 6) · 18
2
√

205 .

We can get −βγ from αδ by changing
√

205 to −√
205; thus

−βγ = (
√

205 + 6) · 18
2
√

205 .
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Now the right-hand side of (41) is that of (31), namely 182. The left-hand sides of
those equations agree at (α, β) and (γ, δ), if our computations have been correct.
Since those left-hand sides obviously agree at a third point, namely (0, 0), they
must agree everywhere, since also the left-hand side of (41) does multiply out to
Ax2 + Bxy + Cy2 for some three coefficients A, B, and C.

Theoretically speaking, we can confirm Apollonius as follows. After multiply-
ing (31) by 29, we can complete first the square in the terms in y to obtain

(29y − 13x)2 + (18x)2 = 29 · 182.

This shows that the line x = 0 is a diameter, and its conjugate is 29y = 13x. In
the same way, for any constant s, the line y = sx is a diameter with a conjugate;
for letting t = y − sx, replacing y in (31) with t + sx, we get

(17 − 26s + 29s2)x2 − (26 − 2 · 29)xt + 19t2 = 182;

completing the square in the terms in x yields the diameter that is conjugate to
t = 0, that is, to y = sx. This requires 17 − 26s + 29s2 not to be 0, and it never is,
since 4 · 17 · 29 − 262, which is ∆ for (31), is positive. The same argument works
for any ellipse.

3. Example: hyperbola

Change the sign on one of the squares in (24), we get the two possibilities

±
(
4(x − 4) − 2(y − 1)

)2 ∓
(
(x − 4) − 5(y − 1)

)2 = (5 · 4 − 1 · 2)2,

which multiply out, respectively, to

15x2 − 6xy − 21y2 − 114x + 66y − 129 = 0,

−15x2 + 6xy + 21y2 + 114x − 66y − 519 = 0

and define the solid and dashed curves shown in Figure 7. The curves are conjugate
hyperbolas that share, with the ellipse of § 2, the conjugate diameters A′A and
B′B. Performing on the first hyperbola the same procedure that we used for the
ellipse, we obtain the points shown in Figures 8 and 9. The endpoints of the
diameters DD′ and GG′, as well as of BB′, lie on the other hyperbola; however,
we do not actually need BB′ and DD′, in order to find the axes. We find F and
F ′ of our chosen hyperbola, as before we found them on the ellipse; they are(

4 ±
√

3(43 + 7
√

37)
2
√

37 , 1 ∓
√

3(31 − 5
√

37)
2
√

37

)
.

Then G, and G′ are(
4 ±

√
3(43 − 7

√
37)

2
√

37 , 1 ±
√

3(31 + 5
√

37)
2
√

37

)
.

If we worked instead with the second equation, we would interchange the roles of
x and y, finding first the conjugate diameters, one of which is vertical, and then
intersecting with a circle that shares this diameter.
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Figure 7: Conjugate hyperbolas and shared axes

4. General solution

We now work out the curve defined by (21), namely Ax2 +Bxy+Cy2 = |∆| /4.
As we noted, this is the equation that we obtain from (4) after translating the origin
of coordinates to the center of the conic, provided also that (4) is a rewriting of
(3).

Theorem 1
The curve defined by (21), under the assumption A > 0 and ∆ ̸= 0, is an ellipse
or hyperbola, defined also by

(δx − γy)2 ± (βx − αy)2 = (αδ − βγ)2, (42)

where the ambiguous sign is that of ∆, and, under the abbreviation

ϑ =
√

B2 + (A − C)2, (43)

the parameters α, β, γ, and δ are well defined by

α = 1
2

√
(ϑ + A − C) · |ϑ − A − C|

ϑ
,

β = B

2 |B|

√
(ϑ − A + C) · |ϑ − A − C|

ϑ
,

(44)

and

γ = 1
2

√
(ϑ − A + C)(ϑ + A + C)

ϑ
,

δ = −B

2 |B|

√
(ϑ + A − C)(ϑ + A + C)

ϑ
.

(45)
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Figure 8: Conjugate hyperbolas and shared axes

Then also (α, β) and (γ, δ) are orthogonal to one another, so that ±(α, β) and
(γ, δ) are endpoints of the axes of the conic.

Proof. One can prove the claim by multiplying out (42) with the given values
of α, β, γ and δ to get (21). Instead we shall derive those values. We want them
to be such that

αγ + βδ = 0
and the equation

(δx − γy)2 ± (βx − αy)2 = Ax2 + Bxy + Cy2

is an identity. One can use these conditions directly to solve for (α, β) and (γ, δ).
However, this algebraic approach does not seem to save any of the labor of the
following more geometric approach, generalizing what we did in the previous sec-
tions.

If we multiply (21) by 4A, we can then complete squares to obtain

(2Ax + By)2 + ∆y2 = A |∆| .

This defines the same curve, since we assume A ̸= 0. Thus, if ∆ < 0, then (21)
must define an hyperbola. In this case, there is another hyperbola, given by

Ax2 + Bxy + Cy2 = − |∆| /4. (46)

The new hyperbola is conjugate to the first, in the sense of sharing the conjugate
diameters given by 2Ax + By = 0 and y = 0 respectively, as well as being tangent,
at points lying on one of those diameters, to the ellipse given by

(2Ax + By)2 − ∆y2 = A · |∆| .
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Figure 9: Conjugate hyperbolas and shared axes

Regardless of whether ∆ is positive or negative, we cut our ellipse, or hyperbola,
or its conjugate, with the circle given by

Ax2 + Ay2 = |∆| /4.

The points of intersection lie on the two lines whose union is given by

Bxy + Cy2 = Ay2.

Thus the lines themselves are given respectively by

y = 0, Bx = (A − C)y. (47)

These two lines meet the circle that has center O and radius ϑ at the points

± (ϑ, 0), ± (A − C, B).

Then the bisectors of the angles formed by the two lines defined by (47) have
slopes m and m′, defined by

m = B

ϑ + A − C
= ϑ − A + C

B
,

m′ = −B

ϑ − A + C
= ϑ + A − C

−B
.

(48)

Then mm′ = −1 and

m2 = m

−m′ = ϑ − A + C

ϑ + A − C
, (49)

m′2 = m′

−m
= ϑ + A − C

ϑ − A + C
. (50)
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We now solve (21) simultaneously with

y = mx. (51)

The solution is that of (51) with

(A + mB + m2C)x2 = |∆| /4. (52)

From (49),

A + mB + m2C = A + (ϑ − A + C) + (ϑ − A + C)C
ϑ + A − C

= (ϑ + A − C)(ϑ + C) + (ϑ − A + C)C
ϑ + A − C

= ϑ2 + (A − C)ϑ + 2ϑC

ϑ + A − C

= ϑ2 + (A + C)ϑ
ϑ + A − C

= (ϑ + A + C)ϑ
ϑ + A − C

. (53)

By (43),
0 < ϑ − |A − C| ⩽ ϑ ⩽ ϑ + |A − C| .

Moreover,
∆ = (A + C)2 − ϑ2 = (A + C + ϑ)(A + C − ϑ),

and this gives us the following cases.
• If ∆ > 0, then, both A and C are positive, and so both factors A + C ± ϑ

are positive.
• if ∆ < 0, then just one of those factors is positive, namely A + C + ϑ.

Thus
|∆| = (A + C + ϑ) |A + C − ϑ| ,

and so (52) is equivalent to

x2 = (ϑ + A − C) · |ϑ − A − C|
4ϑ

,

and the right-hand side of this is positive. The positive solution of this last equation
is α as in (44). Also, m has the sign of B by (48), so that

m = B

|B|
√

m2,

and therefore

mα = B

2 |B|

√
m2 · (ϑ + A − C) · |ϑ − A − C|

ϑ
= β

by (49). Thus (α, β) satisfies (21) and (51).
In the same way, m′ has the opposite sign of B, and so, with γ and δ as in

(45),
m′γ = δ.
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As for γ itself, the pattern of (53) gives us

A + m′B + m′2C = (A + C − ϑ)ϑ
ϑ − A + C

.

Because of this, the equation

(A + m′B + m′2C)x2 = ∆/4

is equivalent to

x2 = (A + C + ϑ)(ϑ − A + C)
4ϑ

;

the right-hand side is positive, and γ solves the equation. Thus (γ, δ) is on
• the ellipse that (21) defines, if ∆ > 0;
• the conjugate hyperbola that (46) defines, if ∆ < 0.

In any case, we have derived the theorem.

Thanks to the referees for reading and helping to show what could be clarified.
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