
FOLIA 345

Annales Universitatis Paedagogicae Cracoviensis
Studia ad Didacticam Mathematicae Pertinentia 13(2021)

ISSN 2080-9751
DOI 10.24917/20809751.13.7

Piotr Błaszczyk, Anna Petiurenko

Commentary to Book I of the Elements.
Hartshorne and beyond∗∗∗

Abstract. (Hartshorne, 2000) interprets Euclid’s Elements in the Hilbert
system of axioms, specifically propositions I.1–34 covering the foundations of
Euclidean geometry. We develop an alternative interpretation that explores
Euclid’s practice concerning the relation greater-than. Discussing the Fifth
Postulate, we present a model of non-Euclidean plane in which angles in
a triangle sum up to π. It is a subspace of the Cartesian plane over the field
of hyperreal numbers R∗.
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1. Introduction

Robin Hartshorne’s (Hartshorne, 2000) is the most insightful reading of the
foundations of the Euclid system ever. It provides a coherent interpretation of
the Elements Books I to IV within the Hilbert system of axioms and a thor-
ough discussion of Euclid’s stereometry, i.e., Books XI to XIII. As for Books V
and VI, Hartshorne replaces the theory of proportion with the Hilbert-style, non-
Archimedean field of line segments and, in that vein, interprets Euclid’s theory of
similar figures. Due to that theoretical bias, the book does not provide tools en-
abling one to explain the way modern mathematics absorbed Euclid’s geometry.1
Nevertheless, it is a must-read supplement to modern axiomatic interpretations of
Euclid geometry, such as (Tarski, 1959) and (Borsuk, Szmielew, 1960).

In this paper, we adopt Hartshorne’s idea of the construction tools to com-
pare the Hilbert and Euclid system in developing geometry without the parallel
postulate, i.e., propositions I.1–28, and the theory of parallel lines, I.29–34. These
include copying line segments and angles, as Hilbert tools, and Euclidean straight-
edge and compass.

Euclid’s tools enable one to copy line segments (I.3) and angles (I.23), meaning
they are at least as effective as Hilbert’s. On the other hand, Euclid’s proofs of
propositions I.1 and I.22 require a compass and cannot be recovered in the Hilbert
system. Nevertheless, Hartshorne views the construction of an equilateral triangle
(I.1) and a triangle from given sides (I.22) simply as means to copy line segments
and angles, while in propositions such as I.9–11, where Euclid needs an equilateral
triangle, he applies an isosceles triangle instead. Owning to that procedure, he
managed to interpret most of Euclid’s propositions from Book I within the Hilbert

1(Błaszczyk, 2021) presents Descartes’ Geometry as transforming Euclidean proportion into
the arithmetic of line segments.
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system; however, in most cases, their thesis rather than proof techniques. In con-
trast to Euclid’s I.1, Hartshorne proves the existence of an isosceles triangle but
does not provide its construction. His proofs of I.9–11, thus, are not constructive
(Hartshorne, 2000, 99–101). Yet, the crucial discrepancy concerns the role of the
relation greater-than in both systems. It is a primitive concept in the Elements,
while Hartshorne, like Hilbert, introduces it by definitions and, last but not least,
reduces its role in the deductive structure of Book I. In this paper, we reveal the
prominent position of the relation greater-than in Book I of the Elements.

Every commentary to Book I has to discuss the Fifth Postulate (P5). In the
famed proposition I.32, Euclid shows that P5 implies that angles in any triangle
sum up to π. Hartshorne shows (Hartshorne, 2000, 321–322) that the reverse im-
plication obtains in Archimedean planes. Max Dehn, in (Dehn, 1900), presented
a model of the absolute geometry where P5 is not satisfied, yet angles in tri-
angles sum up to π, the so-called semi-Euclidean plane. It was a subspace of
non-Archimedean, Pythagorean field. We present another model of semi-Euclidean
plane. It is a subspace of non-Archimedean, Euclidean plane over the field of hy-
perreal numbers R∗. In our model P5 is not satisfied, angles in triangles add up
to π, but also the circle-circle axiom is satisfied, as well as the standard (modern)
Euclidean trigonometry.

2. Hilbert axioms for plane geometry

Hilbert’s Grundlagen der Geometrie, from (Hilbert, 1899) to (Hilbert, 1972)
got eleven editions. (Hartshorne, 2000) includes its modern version adjusted to
educational practice. Hilbert axioms, as presented therein, differ from the original
only in applying modern symbols.2 Here they are, grouped by Hilbert due to
primitive concepts of his system: point, straight line, the relation of betweenness,
congruence of line segments, and angles.

Axioms of Incidence
I1. For any two distinct points A, B, there exists a unique line l containing

A, B.
I2. Every line contains at least two points.
I3. There exist three noncollinear points (that is, three points not all contained

in a single line).
Axioms of Betweenness
B1. If B is between A and C, (written A ∗ B ∗ C), then A, B, C are three

distinct points on a line, and also C ∗ B ∗ A.
B2. For any two distinct points A, B, there exist points C, D, E such that

A ∗ B ∗ C, A ∗ D ∗ B, and E ∗ A ∗ B.3
B3. Given three distinct points on a line, one and only one of them is between

the other two.
2(Greenberg, 2008, 597–602), provides a concise account of Hilbert axioms, while (Hartshorne,

2000) introduces them in pace as theory develops.
3Hartshorne adopts the existence of C and shows how to prove the existence of D and E

(Hartshorne, 2000, 73–79); Hilbert adopts the existence of C and D (Hilbert, 1899, 82); Greenberg
– C, D, and E (Greenberg, 2008, 597). The third version explicitly states that points on a line
are dense, as well as the line can be extended to the right or to the left.
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B4. (Pasch). Let A, B, C be three non collinear points, and let l be a line not
containing any of A, B, C. If l contains a point D lying between A and B, then it
must also contain either a point lying between A and C or a point lying between
B and C.

Axioms of Congruence for Line Segments
C1. Given a line segment AB, and given a ray r originating at a point C, there

exists a unique point D on the ray r such that AB ∼= CD.
C2. If AB ∼= CD and AB ∼= EF , then CD ∼= EF . Every line segment is

congruent to itself.
C3. (Addition). Given three points A, B, C on a line satisfying A ∗ B ∗ C,

and three further points D, E, F on a line satisfying D ∗ E ∗ F , if AB ∼= DE and
BC ∼= EF , then AC ∼= DF .

Axioms of congruence for Angles
C4. Given an angle ∠BAC and given a ray −−→

DF , there exists a unique ray −−→
DE,

on a given side of the line DF , such that ∠BAC ∼= ∠EDF .
CS. For any three angles α, β, γ, if α ∼= β and α ∼= γ, then β ∼= γ. Every angle

is congruent to itself.
C6. (SAS) Given triangles ABC and DEF , suppose that AB ∼= DE and

AC ∼= DF , and ∠BAC ∼= ∠EDF . Then the two triangles are congruent, namely,
BC ∼= EF , ∠ABC ∼= ∠DEF and ∠ACB ∼= ∠DFE.

Archimedes’ axiom (A)
Given line segments AB and CD, there is a natural number n such that n

copies of AB added together will be greater than CD.
Parallel axiom (P)
For each point A and each line l, there is at most one line containing A that

is parallel to l.
Absolute (neutral) geometry consists of axioms of the groups of incidence,

betweenness, and congruence of line segments and angles.4

Other 20th century systems of elementary geometry, such as (Tarski, 1959),
(Borsuk, Szmielew, 1960), adopt the general scheme of the Hilbert system and
review Euclidean geometry in terms of incidence, betweenness, and congruence.
While they include the axiom on copying line segments (C1), they managed
to eliminate the congruence of angles. Instead of copying angles (C4), (Borsuk,
Szmielew, 1960) introduces an axiom on triangle construction, and instead of the
SAS criterion for congruent triangles, (Borsuk, Szmielew, 1960), and (Tarski, 1959)
adopt the so-called five-segment axiom. These modifications show that the concept
of angle can be reduced to a triangle. Indeed, in the Elements, the construction
of a triangle with given sides is a technique of copying angles.

4(Hartshorne, 2000, 305), (Greenberg, 2008, 161), (Pambuccian, 2021, 114) justify that ter-
minology.
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3. Review of Book I of the Elements

(Hartshorne, 2000, 102), introduces the term Hilbert construction tools, mean-
ing transportation (copying) of line segments and angles. Hilbert axioms C1 and
C4 decree these tools and also state the uniqueness of respective line segments and
angles – the stipulation, uncommon in the Elements, plays a key role in Hilbert-
style demonstrations.

Hilbert tools reduce to the first (Hartshorne, 2000, 185–186). A tool enabling
the copying of line segments is called a divider, a gauge, or a rigid compass.
Hilbertean constructions, thus, are accomplished with straightedge and divider,
Euclidean with straightedge and compass. Since Euclid shows how to copy line
segments (I.3), his construction tools are at least as efficient as Hilbert’s.

In this paper, we adopt a perspective of construction tools to contrast Euclid
and Hilbert approaches and seek to identify Euclidean constructions that surpass
the capabilities of straightedge and divider.

Finally, let us observe that Hilbert construction tools require a grown theory
to justify constructions. In the Elements, on the contrary, a theory develops step
by step with new constructions, meaning they constitute a deductive structure
of the system. And indeed, whereas Postulates 1–3 introduce straightedge and
compass, Postulate 5 is the famous parallel axiom. Thus, from the perspective
of the Elements, construction tools and the parallel axiom belong to the same
category of basic rules.

3.1. Transportation of line segments. I.1–3

I.1 To construct an equilateral triangle on the given line AB.

Figure 1: Elements, I.1 – schematized.

Given that a stands for the line-segment AB, point C, the third vertex of
the wanted triangle is an intersection of circles (A, a) and (B, a), i.e., circles with
centers at A, and B, and radius equal a.

In tables like the one below, we lay out points resulting from intersections of
straight lines and circles.5

(A, a), (B, a)
C

5The idea of such tables originates from (Martin, 1998).



[48] Piotr Błaszczyk, Anna Petiurenko

Obviously, there are two solutions to that problem, yet at that stage, there are
no means in the Euclid system to show theses two triangles are equal.

In the sequel, we use the following abbreviations explained one after another
while going through the subsequent propositions of Book I of the Elements.

AB→ extension of line segment AB Postulate 2
(A, a) circle with center A and radius a Postulate 3

Ab transportation of line segment b to point A I.2
mid AB midpoint of line segment AB I.10
AB ⊥ C perpendicular to line AB through point C I.11, 12

ABα transportation of angle α to line segment AB at point A I.23
A ∥ BC parallel to BC through point A I.27, 31

sq on AB square on line segment AB I.46

I.2 To place a straight-line at point A equal to the given straight-line BC.

Figure 2: Elements, I.2 – schematized.

On the line-segment AB, we construct an equilateral triangle ABD with side a;
the accompanying diagram depicts it in gray (its shadow). Point G is the intersec-
tion of the circle (B, b) and the half-line DB→ – the extension of the line segment
DB according to Postulate 2. Now, DG represents the sum of line-segments a, b.
Circle (D, a + b) intersects the half-line DA→ at point L. Due to the Common
Notions 3, AL proves to be equal b.

(B, b), DB→ (D, a + b), DA→

G L

Owning to I.1–2, b is placed at A in a very specific position. Drawing a circle
(A, b), one can choose any other position at will, and that is the substance of
proposition I.3.

I.3 To cut off a straight-line equal to the lesser C from the greater AB.
At first, line-segment b is transported to A into position AL; the accompanying

diagram depicts the shadow of that construction; let Ab be its symbolic represen-
tation. The intersection of the circle (A, b) and the line-segment AB determines E
such that AE = b.
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Figure 3: Elements, I.3 – schematized.

Ab (A, b), AB
E

Summing up, due to I.1–3, one can transport any line segment to any point
and position. An equilateral triangle is a tool to this end, while the existence of
circle-circle and circle-line intersection points are taken for granted.

The Euclid system requires a circle-circle or circle-line axiom, both finding
grounds in Postulates 1–3 that introduce straightedge and compass. Logically,
these two tools reduce to compass alone (vide Mohr-Mascheroni theorem), yet,
throughout the ages, the economy of diagrams prevailed, and no one questioned the
rationale for Euclid instruments. There are, however, models of the Hilbert system
that do not satisfy the circle-circle axiom (Hartshorne, 2000, 168); (Martin, 1998,
91). Hartshorne shows (Hartshorne, 2000, 147) that the counterpart of Euclid
proposition I.22 (construction of a triangle out of the given sides) is not universally
carried out in the Hilbert system. Moreover, in absolute geometry, it is not true
that there exists an equilateral triangle with a given length (Pambuccian, 1998).
Hartshorne, thus, shows the existence of the isosceles triangle (Hartshorne, 2000,
100) and applies it in Euclid’s propositions I.9–11 instead of the equilateral tri-
angle. Anyway, already at the very first propositions of the Elements, we observe
that Euclid’s and Hilbert’s systems follow alternative deductive tracks. These facts
indicate that one cannot simply merge Hilbert’s axioms with Euclid’s arguments.

Yet another set of problems relates to an intersection of two lines. We will
address that question in a commentary to proposition I.10, discussing the concept
side of line.

3.2. Congruence of triangles: SAS to SSS. I.4–8

Throughout propositions I.1–34, equality means congruence, whether applied
to line segments, angles, or triangles. Starting with I.35, equality applies to non-
congruent figures. The 20th-century versions of elementary geometry introduce
a concept of measure (area) to cover that part of Euclid’s geometry, e.g., a formula
for the area of a triangle.
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In I.5–8, Euclid pursues to show the SSS theorem (side-side-side congruence
rule), then assumes I.4, Common Notions, and characteristics of the greater-than
relation. In the Hilbert system, I.4 is axiom C6, addition and subtraction of things
referred to in Common Notions are defined, and respective relations proved, simi-
larly with relation greater-than between line segments and angles. However, in the
Elements, greater-than refers to all magnitudes, i.e., line segments, angles, trian-
gles, figures, and solids. In the 20th-century geometry, greater-than relation does
not apply to triangles but to their areas.

Figure 4: Elements, I.4 – grey area added.

I.4 If two triangles have two corresponding sides equal, and have the angles
enclosed by the equal sides equal, then they will also have equal bases, and the two
triangles will be equal.

The proof of I.4 (SAS criterion) relies on the ad hoc rule: two straight-lines
can not encompass an area. Figure 4 depicts an area encircled by the base EF of
the triangle and a curve with ends E, F . By contrast, Hilbert axioms guarantee
a unique straight line through points E, F and there is no room for diagram such
as Fig. 4 in the Hilbert system.

Since Hilbert proved other axioms of his system do not imply I.4, there is
no need to ponder Euclid’s argument. Yet, it is worth mentioning that the 20th-
century courses of Euclidean geometry, especially ones dedicated to secondary
schools, still apply the method of superposition.

I.5 Let ABC be an isosceles triangle. I say that the angle ABC is equal to ACB.
The construction part is simple: F is taken at random on the half-line AB→,

then G such that AF = AG is determined on the half-line AC→.

AB→ (A, a + b), AC→

F G
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Figure 5: Elements I.5 – scheme of the proof.

Now, due to SAS, △GAB = △FAC. Thus FC = BG and

β = ∠AGB = ∠AFC = β′,

γ = ∠ABG = ∠ACF = γ′.

Again by SAS, △BFC = △BGC, and

δ = ∠CBG = ∠BCF = δ′.

By CN 3, γ − δ = γ′ − δ′. Since

α = γ − δ, γ′ − δ′ = α′,

the equality α = α′ holds. □

I.6 Let ABC be a triangle having the angle ABC equal to the angle ACB. I say
that side AB is also equal to side AC.

The proof reveals assumptions in no way conveyed through definitions or ax-
ioms. At first, it is the trichotomy law for line segments. Let AB = b, AC = c,
AB = a (Fig. 6). To reach a contradiction Euclid takes: if b ̸= c, then b < c or
b > c. Tacitly he assumes that exactly one of the conditions holds

b < c, b = c, b > c.

Let b > c. Then the construction follows: “let DB, equal to the lesser AC,
have been cut off from the greater AB”. However, given that angles at B and C
are equal, then AB = c, and the cutting off “the lesser AC from the greater AB”
cannot be carried out. On the other hand, if AB = b and b > c, the triangle ABC
is not isosceles, and angles at B, C are not equal. Throughout the proof, thus,
the diagram changes its metrical characteristics and cannot meet the assumptions
of the proposition; in the diagram, D is a random point on AB, rather than
introduced via intersection of the circle (B, c) and the side AB.
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Figure 6: Elements I.6 – scheme of the proof.

Now, by SAS, the equality of triangles △DBC = △ACB holds, and Euclid
concludes the lesser to the greater. The very notion is absurd.

This time, the trichotomy law applies to triangles. The contradiction

△DBC = △ACB & △DBC < △ACB

occurs, given the tacit rule: For triangles, exactly one of the following conditions
holds

△1 < △2, △1 = △2, △1 > △2.

I.7 On the segment-line AB, two segment lines cannot meet at a different point
on the same side of AB.

Figure 7: Elements, I.7 – letters a, b added.

The proof, atypically, includes no construction. To get a contradiction, Euclid
assumes there are two points C, D such that AC = a = AD and BC = b = BD
(Fig. 7).

Both triangles △ACD and △BCD are isosceles and share the common base
CD. In the first, angles at the base are equal, α = α′. Similarly, in the second
triangle, β = β′ (Fig. 8).
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Figure 8: Elements, I.7 – scheme of the proof.

At the vertex C, the inequality α > β is visualized, while at D, β′ > α′.6
Thus, β′ > β and, as stated earlier, β′ = β. The very thing is impossible – clearly,
because exactly one of the conditions holds

β′ < β, β′ = β, β′ > β.

That proof assumes the trichotomy rule for angles and transitivity of greater-
than relation. By modern standards, it is, thus, a total order.7

In I.8, Euclid literally states the SSS criterion. Since the proof depends on
a superposition of triangles, we propose the following paraphrase:

If two triangles share a common side and have other corresponding sides equal,
then their corresponding angles will also be equal.

In I.9–12, it is employed in that form as Euclid considers two equal triangles
on both sides of the common side; in I.23, it is employed to copy angles, yet, the
construction of perpendicular plus SAS would do to that end.

Proof of that modification of I.8 effectively reduces to I.7.8 Similarly, it does
not include a construction part, meaning point G is only postulated rather than
introduced through straightedge and compass (Fig. 9).

From I.8 on, Euclid considers two congruent triangles on both sides of a shared
base.

3.3. Greater-than and Common Notions

Through §§ 10–11 of (Hartshorne, 2000), Hartshorne seeks to prove Euclid’s
propositions I.1–34 within the Hilbert system, except I.1 and I.22, as they require
the circle-circle axiom. He observes that “Euclid’s definitions, postulates, and com-
mon notions have been replaced by the undefined notions, definitions, and axioms”
in the Hilbert system. Commenting on Euclid’s proof of I.5–8, Hartshorne writes:

6(Błaszczyk, Mrówka, Petiurenko, 2020) expounds the term visual evidence in a broader
context. (Beeson, Narboux, Wiedijk, 2019, 216), identifies Euclid’s reliance on the greater-than
relation and suggests that in I.7 one should consider the dimension of the space.

7Euclid applies the phrase “is much greater than” when referring to the transitivity.
8Proof of I.7 gets complicated when point D lies inside triangle ABC.
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Figure 9: Proof of I.8 schematized.

Proposition I.5 and its proof is ok as they stand. [...] every step of
Euclid’s proof can be justified in a straightforward manner within the
framework of a Hilbert plane. [...] Looking at I.6 [...] we have not defined
the notion of inequality of triangles. However, a very slight change will
give a satisfactory proof. [...] I.7 [...] needs some additional justification
[...] which can be supplied from our axioms of betweenness [...]. For I.8,
(SSS), we will need a new proof, since Euclid’s method of superposition
cannot be justified from our axioms (Hartshorne, 2000, 97–99).

The above comparison between Euclid’s and Hilbert’s axiomatic approach sim-
plifies rather than expounds. Euclid implicitly adopts greater-than relation between
line segments, angles, and triangles as a primitive concept; similarly to addition
and subtraction. In the previous section, we have shown that he takes transitivity
and the trichotomy law to be self-evident. Further characteristics follow from his
theory of magnitudes developed in Book V – the only part of Euclid’s geome-
try hardly discussed by Hartshorne (Hartshorne, 2000, 166–167). Here is a brief
account based upon (Błaszczyk, Mrówka, 2013, ch. 3), (Błaszczyk, 2021), and
(Błaszczyk, Petiurenko, 2019).

Euclidean proportion (for which we adopt symbol :: originated from the 17th-
century) is a relation between two pairs of geometric figures (megethos) of the
same kind, triangles being of one kind, line segments of another kind, angles of
yet another. Magnitudes of the same kind form an ordered additive semi-group
M = (M, +, <) characterized by the five axioms given below:

E1 (∀a, b ∈ M)(∃n ∈ N)(na > b).
E2 (∀a, b ∈ M)(∃c ∈ M)(a > b ⇒ a = b + c).
E3 (∀a, b, c ∈ M)(a > b ⇒ a + c > b + c).
E4 (∀a ∈ M)(∀n ∈ N)(∃b ∈ M)(nb = a).
E5 (∀a, b, c ∈ M)(∃d ∈ M)(a : b :: c : d), where na = a + a + ... + a︸ ︷︷ ︸

n−times

.

Clearly, E1–E3 provide extra characteristics of the greater-than relation; while
E1 is a sheer rendition of definition V.4, currently called the Archimedean axiom.
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A modern interpretation of Common Notions is straightforward: CN1 justifies
the transitivity of congruence of line segments, triangles, and angles, CN2 and
CN3 – addition and subtraction in the following form

a = a′, b = b′ ⇒ a + b = a′ + b′, a − a′ = b − b′.

The famous CN5, Whole is greater than the part, allows an interpretation by
the formula a + b > a.9

In the Hilbert system, the greater-than relation is defined through the concept
of betweeness and refers only to line segments and angles; similarly, addition of line
segments and angles is introduced by definitions.10 Then counterparts of Euclid’s
axioms E2, E3, CN1–3 are proved as theorems.

In the sequel, we will be referring to our interpretation of Euclid’s greater-than
relation, therefore already at that stage, we juxtapose Euclid’s and Harthstone’s
proof of I.29 as a model clash of these alternative approaches. Its substance is as
follows: When a line n falls across parallel lines l, p, equality of angles obtains
α = β (Fig. 10, left).

Euclid’s proof goes like that: For, if they are not equal, one of the angles is
greater, suppose α > β. Then (implicitly by E3),

α > β ⇒ α + α′ > β + α′,

given that α, α′ are supplementary angles.
Since α + α′ = π, angles β, α′ satisfy the requirement of the parallel axiom,

i.e., β + α′ < π and straight lines l, p meet, contrary to the initial assumption.

Figure 10: Elements, I.29 schematized (left). Hartshorne’s version (right)

On the other hand, Hartshorne’s proof of I.29 rests on the parallel axiom
stating there is exactly one line through the point A parallel to p (Fig. 10, right).
If α ̸= β, then, by I.27, a line l′ through A making angles β with n is parallel to
p, which contradicts the uniqueness of a parallel line through A.

9(Błaszczyk, Mrówka, Petiurenko, 2020, 73–76). (Avigad, Dean, Mumma, 2009, 722), also
adopt that interpretation of CN5, but without any reference to the Elements. On another occasion
(p. 704), they interpret CN5 as an inclusion of areas. Indeed, it is controversial to imply that by
checking a diagram, one could confirm that a + b > a. Yet, on page 744, they suggest that one
can read off a diagram that parts make a sum a + b, and based on that observation – we guess
– one can infer that a + b > a.

10(Hartshorne, 2000, 85, 93, 95, 168).
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Euclid, thus, considers line l which meets or not p, Hartshorne – two paral-
lels to p. The second argument clearly bears a hint of knowing the hyperbolic
geometry. If two parallels to a given line occurred in the Elements, even though
in a reductio ad absurdum proof, the history of the Fifth Postulate could take
a different track.

3.4. Reductio ad absurdum arguments. Beeson on Book I

There are eleven indirect proofs in Book I; ten of them, namely I.6, 7, 14,
19, 25, 26, 27, 29, 39, 40, employ greater-than relation. It is – let us remind –
a primitive concept characterized by the transitivity and the trichotomy law in
the form: exactly one of the following conditions holds

x < y, x = y, x > y,

where x, y range over line segments, or angles, or triangles. Reductio ad absurdum
proofs share the pattern: If x ̸= y, then x < y or x > y. Assuming x < y,
a contradiction follows. Similarity, x > y implies a contradiction. As a result,
x = y.

Contradictions are of two types: (1) v = u and v > u, (2) v = u and v =
u + w, where the range of v, u, w and x, y can differ. For example, in I.6, Euclid
shows that inequality of line segments implies the contradiction of the second kind,
moreover, it concerns triangles, rather than line segments. In I.26, inequality of line
segments implies the contradiction of the second kind concerning angles. Under
our interpretation of CN5 by the formula a + b > a, we can reduce contradictions
of the second type to the first type.

(Beeson, 2010) develops an interpretation of Euclid’s Book I in the Hilbert-
style axioms combined with the intuitionistic logic; it reads:

We will take care to formulate our axioms without quantifiers and
without disjunction, which will be key to our applications of proof
theory. What we aim to do in this section is to formulate such a theory,
which we feel is quite close in spirit to Euclid. In formulating this
theory, we made use of the famous axioms of Hilbert [...]. The only
question of serious interest is whether disjunction can be completely
avoided. It can, as it turns out (Beeson, 2010, 17).

In this vein, he defines relation greater than for line segments through the
relation of betweenness, yet does not prove the trichotomy law.11 Indeed, the
trichotomy law fails to hold in a constructive context. Beeson can prove in his
system that ¬(x = y) ⇒ (x < y ∨ x > y), however, in intuitionistic logic, it does
not entail the trichotomy law, i.e.,12

¬(x = y) ⇒ (x < y ∨ x > y) ̸|= (x = y ∨ x < y ∨ x > y).

11(Beeson, 2010, 17–22).
12Beeson adopts Markov’s principle to show the implication ¬(x = y) ⇒ (x < y ∨ x > y),

however, under some interpretations, INT+Markov’s principle = Classical Logic.
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When analyzing Euclid’s indirect proofs, specifically I.6, 26, Beeson observes:

it seems that the only classical arguments that occur in Euclid are
applications of the principle ‘if ab and cd are unequal, then one of
them is longer’ (Beeson, 2010, 28).

However, even assuming classical logic, Euclid’s indirect proofs do not satisfy
the scheme: x ̸= y ⇒ x < y∨x > y. In proposition I.6, Euclid assumes that exactly
one of the following conditions holds

x < y, x = y, x > y,

eliminates x < y, then x > y, and on these grounds concludes x = y. The tri-
chotomy law is crucial when one seeks to mirror Euclid’s reasoning.

3.5. Perpendicular lines. I.9–12

Two subsequent propositions provide bisection of an angle and a line segment.
Then Euclid constructs a perpendicular to a line through a point lying on it and
outside it. The SSS rule is applied to justify these constructions.

I.9 To cut a given rectilinear angle in half.
Taking D on AB, point E is such that AD = b = AE (Fig. 11). Point F

is determined by I.1, taking DE = a. Then by SSS, △FDA = △FEA. Hence,
2β = α.

Figure 11: Proof of I.9 schematized.

AB→ (A, b), AC→ (D, a), (E, a)
D E F

Euclid’s diagram implies a < b. If a > b, the line AF also divides α in half.
When a = b, the construction does not produce a new point, given that I.1 pro-
duces only one point. I.8 implies the construction of congruent triangles on both
sides of DE.
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I.10. To cut a given finite straight-line in half.
On both sides of AB, construct equilateral triangles △ABC and △ABF (Fig.

12). By I.9, CF divides in half angle ∠ACB. Then, by SAS, △ACD = △BCD,
hence AD = DB.

Figure 12: Proof of I.10 schematized.

(A, a), (B, a) CF, AB
C, F D

Note that point D occurs as an intersection of two straight lines. There is no
explicit rule in the Euclid system to guarantee its existence. In the Hilbert system,
it follows from the so-called cross-bar theorem, a simple follow-up of the Pasch
axiom (Hartshorne, 2000, 77–78).13

I.11 To draw a straight-line at right-angles to a given straight-line from a given
point on it.

Taking a random point D on the half-line CA→, E is determined such that
CD = CE, and F is the vertex of equilateral triangle DFE (Fig. 13). By I.8,
△DFC = △EFC. Hence, ∠DCF = ∠ECF . Since they are equal and supplemen-
tary angles, by I def. 10, they are both right angles.

CA→ (C, a), AB (D, 2a), (E, 2a)
D E F

13One can also justify the existence of point D owning to the concept of side of straight line:
the points C and F are known to lie on different sides of the line AB, and thus, the segment CF
intersects the line AB; see § 3.8 below.
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Figure 13: Proof of I.11 schematized

Figure 14: Proof of I.12 schematized

I.12 To draw a straight-line perpendicular to a given infinite straight-line from
a given point which is not on it.

D is a random point “on the other side [to C] of the straight-line AB” (Fig.
14). By I.10, H is determined such that GH = HE. By SSS, △GCH = △ECH
and by the same argument as in I.11, ∠CHG = CHE = π/2.

AB, (C, a) (G, b), (E, b) CF , AB
AB, C D G, E F H

Euclid does not definite the side of line – the concept involved in I.8 and I.12.
Modern systems reveal its importance.

3.6. A comment on Postulate 2

In the Hilbert system, due to B2, the straight line has no ends. In most of
Euclid’s propositions, a straight line is a line segment with endpoints – a closed
line segment, by modern standards. That is why the term line standing on another
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line involved in propositions I.13–14 makes sense;14 in Fig. 16, lines EB and AB
stand on DC. Such a line can stand at point B that is between D and C (Fig.
16), or at the endpoint, such as AB stands on CB in Fig. 17. Now, the line
standing on another line enables Euclid to formulate iff-condition for a line to
be an extension of another line, and that is a job of propositions I.13–14, while
Postulate 2 characterizes the process of extending in a descriptive way, namely To
produce a finite straight-line continuously in a straight-line.

Similarly, in propositions I.27–29, Euclid introduces an auxiliary line enabling
him to eliminate a clumsy condition being produced to infinity included in definition
of parallel lines (I def. 23). Given that symbol l .− p stands for l is straight on with
respect to p, we can represent I.27–29 and I.14 as follows (Fig. 15)

l ∥ p ⇔ α + β = π, l .− p ⇔ α + β = π.

Figure 15: Iff-conditions for parallelism and extension of a line.

3.7. Vertex angles. I.13–15

I.13 If a straight-line stood on a straight-line makes angles, it will certainly
either make two right-angles, or equal to two right-angles.

Figure 16: Elements, I.13 (left).

14The very concept is also employed in the definition of the right angle, I def. 10.
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If ∠CBA = ∠ABD (Fig. 16), by I def. 10, they are two right angles. If
∠CBA ̸= ∠ABD, Euclid tacitly assumes ∠ABD > π/2, draws a perpendicular,
EB ⊥ DC, and argues: since the following equalities of angles obtain

(β + γ) + α = γ + β + α,

(α + β) + γ = α + β + γ,

then, by CN1,
(β + γ) + α = (α + β) + γ.

Hence, ∠ABD + ∠CBA = (α + β) + γ = π.15

□
Instead of Euclid’s embroiled enunciation of proposition I.14, we offer the fol-

lowing paraphrase: If α + β = π, then l is straight on to p, given that n stands on
l at its end (Fig. 17, middle).

Figure 17: Elements, I.14 (left), thesis (middle), and its schematized proof (right).

The proof adopts reductio ad absurdum mode. For if not, let m be straight
on to l; Postulate 2 guarantees the existence of m (Fig. 17, right). Then, by I.13,
α + δ = π. Since δ + γ = β = ∠(n, p), the following equality holds α + δ + γ = π.
Hence

α + δ = α + δ + γ.

By CN3, δ = δ + γ, and Euclid continues: the lesser to the greater. The very
thing is impossible.

□
With our interpretation of CN5, δ + γ > δ, and due to the trichotomy law, it

can not be both δ = δ + γ and δ + γ > δ.
Euclid applies criterion I.14 in I.15 and I.47.
I.15 If two straight-lines cut one another then they make the vertically opposite

angles equal to one another.
By I.13 (Fig. 18),

α + α′ = π = α′ + β.

By CN3, α = β.
□

15However, there is no demonstration whatsoever that γ + β + α = α + β + γ.
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Figure 18: Proof of I.15.

The condition α + α′ = π follows from the assumption AE stands on DC,
while α′ +β = π – from the assumption CE stands on AB. To be more Euclidean,
α and α′ make two right angles, similarly α′ and β make two right angles. By
Postulate 4, all right-angles are equal to one another. Hence α + α′ = α′ + β, and
the conclusion follows.

3.8. Side of straight-line

(Hartshorne, 2000, § 7), introduces the concept side of line l. It is an equiva-
lence relation between points of plane not lying on l defined by: A ∼ B iff A = B
or segment AB does not meet l.

The transitivity of the relation is demonstrated as follows (Fig. 19, left). Let
A ∼ C, and B ∼ C and suppose A ≁ B. Let D = l ∩ AB. Then, by Pasch axiom,
l intersects AC or BC, which contradicts A ∼ C or B ∼ C, respectively.

Relation ∼ determines two equivalence class, called sides of l, or half-planes
determined by l. Euclid’s straight-line is not that long and can not divide the plane
into two halves. Postulate 2 guarantees that one can extend l to, say, point E, but
can not guarantee an intersection l with AC or BC (Fig. 19, right).16

Figure 19: Transitivity of the relation the same side of line (left), Euclidean version
(right).

16The symbol AB→, which we have already applied in tables, evokes a modern half-line that
extends the line segment AB.
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Since there are three non collinear points, relation ∼ determines at least one
equivalence class. Hartshorne shows there are at most two classes. Let us consider
a simpler question on whether there are two different classes. Let A /∈ l, E ∈ l,
then, by B2, there is F such that A ∗ E ∗ F (Fig. 20, left). Hence, A and F lie on
different sides of l.

Figure 20: Finding points on different sides of l (left) and crossbar theorem (right).

Crossbar theorem (Hartshorne, 2000, 77–78), that builds on the Pasch axiom
and the concept of side of the straight line, states that line through A and D
meets the side BC (Fig. 20, right). It enables to infer the existence of points such
as D or H in Euclid’s propositions I.10, 12. Furthermore, the concept of the side
of straight-line is crucial in proposition I.12, as “D have been taken somewhere on
the other side (to C) of the straight-line AB”. Indeed, if D is taken at random on
the same side with C or on the line AB, Euclid’s construction would not work, for
D could be on the perpendicular CH (Fig. 14).

In (Hartshorne, 2000), the concept of supplementary angles and the five-
segment-lines theorem cover Euclid’s propositions I.13 and I.15 (Hartshorne, 2000,
92–93). As for I.14, Hartshorne finds it completely alien to Hilbert’s concepts and
proposes an exercise “to rewrite the statement I.14 so that it makes sense in the
Hilbert plane” (Hartshorne, 2000, 103).17

Let us review I.14 in the context of propositions I.13–15 and find what makes
cutting lines look like in I.15 rather than in the proof of I.14. To this end, let m
be a continuation of n, and p of l. Both n and m stand on the straight line l .− p,
also l and p stand on the line n .− m (Fig. 21). Furthermore, the angles between l
and n, and n and p add up to π;

∠(l, n) + ∠(n, p) = π, ∠(l, m) + ∠(m, p) = π.

These results fit to I.14. However, taking into account that p also stands on
the line n .− m, one obtains

∠(m, p) + ∠(p, n) > π,

since ∠(p, n) > ∠(p, l) = π. It contradicts I.14.

17(Beeson, Narboux, Wiedijk, 2019, 218) finds it simply as a statement on the betweenness
relation, (Mueller, 1981, 20) – a converse of I.13. Clearly, I.15 causes trouble for modern readers.
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Figure 21: Weird straight-lines.

Although the above considerations suggest recovering the concept of the side
of a straight line based on proposition I.14, there is no way in the Euclid system
to introduce it: Euclid plane includes points that lie on a straight line l, those that
do not lie on it, and those that could lie on the extension of l. In propositions
that explicitly limit the scope of points considered, such as I.2, I.21, Euclid does
not rely on Postulate 2 and simply introduces intersection points. In other words,
Postulate 2 does not guarantee intersection points.18

Even though one may find the above speculations unfounded or detached from
the historical context, Euclid could model a straight-line after a ray of light so it
could take forms similar to those depicted in Fig. 22. Indeed, he devoted two sep-
arated volumes to geometrical optics, as we call that discipline nowadays, namely
Optics and Catoptrics (Heiberg, 1895).

Figure 22: Ray of light reflected (left), refracted (right).

3.9. Euclid and modern mathematics. Avigad, Dean, and Mumma on Book I

Whereas (Hartshorne, 2000) interprets the Elements from the perspective of
the Hilbert system, (Avigad, Dean, Mumma, 2009) seems to present a rival reading
as it includes “a formal system providing a faithful model of the proofs in the
Elements, including the use of diagrammatic reasoning” (Avigad, Dean, Mumma,

18In I.2, the extension of AD intersects circle D(a + b), giving point L (Fig. 2); in I.21, the
extension of BD intersects AC giving E (Fig. 28).
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2009, 700–701). Throughout (Hartshorne, 2000) we can find a silent belief that
Euclid’s diagrams encode only assumptions concerning intersecting lines made
explicit due to the Pasch and circle-circle axiom. Avigad, Dean, and Mumma seek
to show that Euclid’s diagrams hide much more – kind of deductive system which
contributed to the historical triumph of the Elements:

For more than two millennia, Euclid’s Elements was viewed by math-
ematicians and philosophers alike as a paradigm of rigorous argumen-
tation. But the work lost some of its lofty status in the nineteenth
century, amidst concerns related to the use of diagrams in its proofs
(Avigad, Dean, Mumma, 2009, 700).

Modern interpretations of the Elements – they continue – apply novel tech-
niques and do not expound on ways of reading the Elements through the ages,
specifically Euclid’s reliance on diagrams. In contrast, their formal system aims to
decode the logic hidden in diagrams.

Without denying the importance of the Elements, by the end of the
nineteenth century the common attitude among mathematicians and
philosophers was that the appropriate logical analysis of geometric in-
ference should be cast in terms of axioms and rules of inference. [...]
This attitude gave rise to informal axiomatizations by Pasch (1882),
Peano (1889), and Hilbert (1899) in the late nineteenth century, and
Tarski’s (1959) formal axiomatization in the twentieth. Proofs in these
axiomatic systems, however, do not look much like proofs in the El-
ements. Moreover, the modern attitude belies the fact that for over
2000 years Euclidean geometry was a remarkably stable practice. On
the consensus view, the logical gaps in Euclid’s presentation should
have resulted in vagueness or ambiguity as to the admissible rules of
inference. But, in practice, they did not; mathematicians through the
ages and across cultures could read, write, and communicate Euclidean
proofs without getting bogged down in questions of correctness. So,
even if one accepts the consensus view, it is still reasonable to seek
some sort of explanation of the success of the practice (Avigad, Dean,
Mumma, 2009, 700–701).

Let us pause for a while at these claims. Euclid’s geometry affected modern
mathematics with mathematical techniques rather than rigorous inferences. These
were, firstly, the theory of similar figures, secondly, the exhaustion method, say,
a pre-calculus. In Greek mathematics, the former relied on proportions. Books V–
VI cover rules of processing ratios and proportions of magnitudes (V.7–25), criteria
for similar triangles (VI.4–7), areas of similar figures (VI.19, 20), or the so-called
generalized Pythagorean theorem (VI.30). Yet, Euclid’s theory of proportion was
neither rigorous nor exercised a diagrammatic reasoning (Błaszczyk, Petiurenko,
2019).

Modern mathematics replaced proportions with implicit rules of an ordered
field, and then, in the 19th century, by the arithmetic of real numbers (Błaszczyk,
2021). In the 18th and 19th centuries, trigonometric identities encoded properties
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of similar figures. By the middle of the 18th century, Euler managed to expand
trigonometric functions into power series (Błaszczyk, Petiurenko, 2022). Thus, as
disguised in trigonometric series, Euclid’s theory of similar triangles is applied in
contemporary real and complex analysis.

Modern axiomatic systems of geometry are motivated by methodology (Hilbert,
Tarski, Borsuk, Szmielew) or education (Peano) of mathematics. They mirror the
structure of Book I, first of all, the pattern: absolute geometry (I.1–28) plus the
theory of parallel lines (I.29 and on), rather than Euclid’s proof technique. Indeed,
they identify gaps in a deductive structure viewed from the modern perspective.
These are axioms relating to intersections of straight lines and circles, the status
of SAS criterion (in modern systems, it is an axiom while in the Elements the
proposition) and propositions I.13–15, which have to be covered alternatively due
to the new concept of a straight line (explained below).

Another shift concerns construction tools. Instead of Euclid’s straightedge
and compass, (Hilbert, 1899) adopts straightedge and rigid compass. (Borsuk,
Szmielew, 1960) and (Tarski, 1959) adopt copying of line segments (vide the axiom
of segment construction) and refine Hilbert’s approach by replacing line segments
with equal distance between pair of points, the copying of an angle with a triangle
construction, and SAS with the five segment axiom.

Now, let us review specifics of Avigad, Dean, and Mumma’s approach in terms
of a “faithful model” of Euclid’s arguments. They write:

Our study draws on an analysis of Euclidean reasoning due to Manders
(2008b), who distinguished between two types of assertions that are
made of the geometric configurations arising in Euclid’s proofs. [...]
we present a formal axiomatic system, E, which spells out precisely
what inferences can be ‘read off’ from the diagram (Avigad, Dean,
Mumma, 2009, 701).

We skip that topic since (Błaszczyk, Petiurenko, 2022) discusses it in detail.
(Hartshorne, 2000) provides a discussion of every Euclid’s proposition from

I.1 through IV.16, detailing which one requires an extra axiom (e.g., I.1, I.22) or
does not make sense in any modern system (e.g., I.14). Avigad, Dean, and Mumma
suggest they can reconstruct every single proposition from Books I to IV:

We claim that our formal system captures all the essential features
of the proofs found in Books I to IV of the Elements (Avigad, Dean,
Mumma, 2009, 714).

In fact, they interpret only three propositions, namely I.1, 2, 10, and also in-
dicate that Euclid’s proofs of I.9 and I.35 do not accord with the rules of their
system. However, since they focus on diagrammatic reasoning, it will not be an
easy task to reconstruct Book II, where Euclid deals with objects not represented
in diagrams at all, as shown in (Błaszczyk, Mrówka, Petiurenko, 2020).

Finally, Avigad, Dean, and Mumma employ the whole machinery of modern
synthetic geometry, especially the Pasch axiom (the plane separation axiom) to
reconstruct Euclid’s reasoning. However, it makes the essential difference between
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Greek and modern geometry: Euclid’s straight line is finite while modern is infinite,
meaning modern cuts the plane into separate half-planes, while Euclid’s does not;
Pasch clearly realized that by writing:

For Euclid, a ‘straight line’ is always bounded by two points. It may
be ‘lengthened’ as needed, but even then remains bounded. For more
recent mathematicians, a ‘straight line’ is unbounded: it would include
all the points that can be reached when a bounded line is lengthened
(Pollard, 2010, 100).

That is why modern systems reformulate the set of propositions I.13–15; in
the Elements it builds on the alien concept of the straight line. Due to this fact,
Euclid’s proof of I.27 is not constructive, whereas those who use an infinite line
view it as a constructive one (see § 3.13 below).19 That apostasy has a far-reaching
consequence regarding Avigad, Dean, and Mumma’s project.

Avigad, Dean, and Mumma adopt an unfounded interpretation of Euclid’s
Second Postulate: “Postulate 2 [...] allows any segment to be extended indefinitely”
and continue

Distinguishing between finite segments and their extensions to lines
makes it clear that at any given point in a proof, the diagrammatic
information is limited to a bounded portion of a plane. But, otherwise,
little is lost by taking entire lines to be basic objects of the formal
system. So where Euclid writes, for example, ‘let a and b be points,
and extend segment ab to c,’ we would write ‘let a and b be distinct
points, let L be the line through a and b, and let c be a point on L
extending the segment from a to b.’ Insofar as there is a fairly straight-
forward translation between Euclid’s terminology and ours, we take
such differences to be relatively minor (Avigad, Dean, Mumma, 2009,
731–734).

Indeed, “the diagrammatic information is limited to a bounded portion of
a plane” – but this is what makes the difference between Euclidean and semi-
Euclidean planes we present in section § 4.20 In that plane, all diagrams look like
Euclidean diagrams, the Pasch axiom is satisfied, yet straight lines are too short to
meet the Fifth Postulate. However, there are no means to read off that information
from a diagram laid down on a piece of the plane; one can get it only due to the
global perspective and the knowledge that the semi-Euclidean plane is a subspace
of the Euclidean one.

19Cf. (Avigad, Dean, Mumma, 2009, 724).
20(Avigad, Dean, Mumma, 2009, 745) adopts the Parallel Axiom after Tarski’s formulation

(Tarski, Givant, 1999, 184), Axiom 10. One can easily show that it is not satisfied in our model.
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3.10. Triangle inequality. I.16-21

That set of propositions is a festival of greater-than relation, with proofs reg-
ularly referring to transitivity, trichotomy law, axioms E2, E3, and Common No-
tions 5.

I.16 For any triangle, when one of the sides is produced, the external angle is
greater than each of the internal and opposite angles.

Figure 23: Elements, I.16 (left) and its schematized proof (middle and right).

BC→ mid AC BE→, (E, b) AC→

△ABC D E F G

Point E is the middle of AC, AE = a = EC; F is such that BE = b = EF .
By I.15, ∠AEB = ∠FEC. Hence, by SAS, △AEB = △FEC (Fig. 23, triangles
in grey), and angles at vertexes A and C are equal, ∠A = α = ∠C. Now,

α + δ > α,

meaning the exterior angle ∠ACD is greater than the interior angle ∠BAE.
The same argument applies to angles ∠ABC and ∠BCG, but ∠BCG =

∠ACD, thus the thesis obtains. □

I.17 For any triangle, two angles are less than two right-angles.

Figure 24: Elements, I.17 (felt), shadow construction I.16 (middle), schematized
proof (right).
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By I.16, α < γ′ (Fig. 24, right). Adding to both sides γ, we obtain

α + γ < γ′ + γ.

Since γ′ + γ = π, the required inequality holds, α + γ < π. □

I.18 For any triangle, the greater side subtends the greater angle.

Figure 25: Elements, I.18 and its schematized proof.

In symbols (Fig. 25, middle)

c > a ⇒ γ > α.

AC, (A, a)
△ABC D

If AC > AB, there is point D such that AD = a = AB. In triangle △ABD,
angles at the base are equal (Fig. 25, right). By I.16, β > α. By transitivity

β > α, γ > β ⇒ γ > α.

Inequality β > α is determined at point D; inequality γ > β – at the vertex B.
□

While c > a ⇒ γ > α represents I.18, the reverse implication γ > α ⇒ c > a,
represents I.19 (Fig. 26). Hence, I.18-19 bring in the equivalence

c > a ⇔ γ > α.

I.19 For any triangle, the greater angle is subtended by the greater side.
The proof builds on the trichotomy law. If c is not greater than a, then c = a

or c < a. From the first case, by I.5, equality follows γ = α. From the second, by
the previous proposition, γ < α. Both cases contradict the supposition γ > α.

□

I.20 For any triangle, two sides are greater than the remaining (side).

AB→, (A, c)
△ABC D
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Figure 26: Elements, I.19 (left).

Figure 27: Elements, I.20 and its schematized proof.

Point D is constructed on BA→ such that AD = c = AC. Hence in triangle
△ADC, angles at the base are equal (Fig. 27, right). Since γ + β > β, in triangle
BDC, by I.19, a+c > b. With regard to other pairs of sides one proceeds similarly.

□

I.21 If two internal straight-lines are constructed on one of the sides of a tri-
angle, from its ends, the constructed (straight-lines) will be less than the two re-
maining sides of the triangle, but will encompass a greater angle. In symbols:

BA + AC > BD + DC and ∠A < ∠D (Fig. 28, left).

Figure 28: Elements, I.21 and its schematized proof.
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The proof is an exercise in the already proved triangle inequality. Given that
c + c1 + c2, we have

e + f < b + c1 ⇒ e + f < b + c1 + c2,

d < f + c2 ⇒ e + d < e + f + c2.

Hence
e + d < b + c.

For the second part, Euclid applies twice I.16 and transitivity as follows

α′ > β, β > α ⇒ α′ > α.

□

3.11. Transportation of angles. I.22–23

In I.22, Euclid builds a triangle from three given line segments.21

Figure 29: Elements, I.22 – small letters added.

The below table presents G, K as intersection points. Let us remind that sym-
bol Da stands for transportation of line segment a to point D based on I.2.

Db (D, b), DE Da Gc (D, a), (G, c)
DE G K

The reminder of the proof includes justifications of equalities FK = a, FG = b,
GK = c. □

I.23 To construct a rectilinear angle equal to a given rectilinear angle at a point
on a given straight-line.

The transportation of an angle α is reduced to a transportation of triangle
△DCE (Fig. 30).

21(Greenberg, 2008, 173), observes it is equivalent to the circle-circle axiom.
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Figure 30: Elements, I.23 – small letters added.

The construction part consists of picking two random points on arms of the
angle.

CK→ CE→

D E

Then triangle △DCE is copied at point A on the line AB (Fig. 31).

Figure 31: Copying an angle.

By the SSS, △CDE = △AFG, hence ∠KCL = α = ∠FAG.
□

3.12. ASA and SAA rules. I.24–26

Propositions I.24–25 are companions to I.18–19, yet, this time, Euclid considers
two separate triangles. We present their thesis in concise, symbolic forms.

I.24 Let AC = a = DF , AB = b = DF , and ∠CAB = α, ∠FDE = β. If
∠CAB > ∠FDE, then CB > EF (Fig. 32). In small letters mode

α > β ⇒ c > d.

Since triangle △DGF is isosceles, the equality of angle holds ∠DGF = ∠DFG.
Hence, in triangle △GFE, δ < γ. By I.18, d < c, meaning FE < CB.

□
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Figure 32: Elements, I.24 and its schematized proof.

I.25 Let AB = a = DE, AC = b = DF , and ∠BAC = α, ∠EDF = β. If
CB > EF , then ∠CAB > ∠FDE (Fig. 33). In small letters mode

c > d ⇒ α > β.

Figure 33: Elements, I.25.

The proof is an exercise in trichotomy law and goes like that. If it is not that
α > β, then α = β or α < β. In the first case, c = d. In the second, by I.24, c < d.

□

I.26 If two triangles have two angles equal to two angles, respectively, and one
side equal to one side then (the triangles) will also have the remaining sides equal
to the remaining sides, and the remaining angle (equal) to the remaining angle.

It is ASA congruence rule: If BC = EF , ∠ABC = ∠DEF , and ∠ACB =
∠DFE, then △ABC = △DEF (Fig. 34).
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Figure 34: Elements, I.26.

Let AB = b, DE = b′ (Fig. 35). Supposing b′ < b, Euclid lays down b′ on
AB, and by SAS rule, gets the equality of triangles △GBC = △DEF . Hence, the
equality of angles follows ∠GCB = ∠ABC, the lesser to the greater.

Figure 35: Elements, I.26 - scheme of the first case proof

In the second case, SAA, AB = DE, ∠ABC = ∠DEF , and ∠ACB = ∠DFE.
Suppose BC > EF . Let BN = b′ = EF (Fig. 36). Thus, △AHB = △DFE, and,
on the one hand ∠AHB = ∠DFE, on the other, by I.16, ∠AHB > ∠DFE, the
very that is impossible.

Figure 36: Elements, I.26 - scheme of the second case proof.

□
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3.13. Parallel lines. I.27–31

Until proposition I.29, Euclid’s arguments do not rely on the parallel postulate,
yet, in I.27, aiming to show AB ∥ CD, given that ∠AEF = ∠EFD (Fig. 38, left)
he invokes definition of parallel lines:

Parallel lines are straight-lines which, being in the same plane, and
being produced to infinity in each direction, meet with one another in
neither (I def. 23).

I.27 If a straight-line falling across two straight-lines makes the alternate angles
equal to one another then the straight-lines will be parallel to one another. In
symbols, α = β ⇒ p ∥ l (Fig. 37).

Figure 37: Simplified version of I.27.

The proof proceeds in reductio ad absurdum mode and starts with the claim: “if
not, being produced, AB and CD will certainly meet together”. Suppose, thus, AB
and CD are not parallel and meet in G (Fig. 38, right). Then, in triangle EFG,
the external angle ∠AEF is equal to the internal and opposite angle ∠EFD,
but, by I.16, ∠AEF is also greater than ∠EFD. Hence, ∠AEF = ∠EFD and
∠AEF > ∠EFD. The very thing is impossible.

□

Figure 38: Elements, I.27 (left) and a triangle implied in its proof (right).

The rationale for point G lies in the definition of parallel lines rather than in
a construction with a straightedge and compass. Thus, next to I.7, it is another
non-constructive proposition of the Elements.
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I.28 If a straight-line falling across two straight-lines makes the external angle
equal to the internal and opposite angle on the same side, then the (two) straight-
lines will be parallel to one another. In symbols, α = β ⇒ l ∥ p (Fig. 39).

Figure 39: Simplified version of I.28 (left) and its proof (right).

The proof refers to I.27 and the equality of vertical angles (Fig. 39, right).
I.29 A straight-line falling across parallel straight-lines makes the alternate

angles equal to one another. In symbols (Fig. 40, right)

p ∥ l ⇒ α = β.

Figure 40: Simplified version of I.29 (left) and its proof (right).

To get a contradiction, suppose α ̸= β. Hence, one of the angles is greater. Let
α > β. Then,

α > β ⇒ α + α′ > β + α′.

Since α + α′ = π, angles β, α′ satisfy the requirement of the parallel axiom,
i.e., β + α′ < π and straight lines l, p meet, contrary to initial assumption.

□
In I.29, Euclid applies the Fifth Postulate for the first time.22 It reads:

And that if a straight-line falling across two (other) straight-lines makes
internal angles on the same side (of itself whose sum is) less than two
right-angles, then, being produced to infinity, the two (other) straight-
lines meet on that side (of the original straight-line) that the (sum of
the internal angles) is less than two right-angles.

22(De Risi, 2016) enlists versions of the Postulate 5 throughout early modern and modern
editions of the Elements.
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In the Fig. 40, angles β, α′ satisfy – let us repeat – the requirement of that
Postulate, that is β + α′ < π. In definition I.23, parallel lines on a plane are
characterized by the condition being produced to infinity do not meet; Postulate
5 includes such a condition that when it is satisfied, makes lines intersect when
being produced to infinity.

Due to propositions I.27–29 we get the following equivalence (Fig. 41)

l ∥ p ⇔ α = β.

Figure 41: Characteristic of parallel lines.

From I.29 on, Euclid applies the above characteristics of the parallel lines and
does not rely on the proviso being produced to infinity any more.

I.30 (Straight-lines) parallel to the same straight-line are also parallel to one
another.

Figure 42: Elements, I.30 (left) and its schematized proof (middle and right).

Since k ∥ l, by I.29, α = β (Fig. 42, middle). Similarity, since l ∥ p, by I.29,
β = γ. By CN1, α = γ. Hence, finally, by I.27, k ∥ p.

□
Propositions I.44, 45 and 47 involve three parallel lines.
The proof seems simple, built on I.27–29 and the transitivity of equality. How-

ever, with no discussion, Euclid assumes the existence of the line GK falling on
the three parallel lines (Fig. 42, left).23

23That assumption, in the case in which all three lines are pairwise parallel, is equivalent to
the Lotschnittaxiom, as shown in (Pambuccian, 2021), Theorem 5.2.
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I.31 To draw a straight-line parallel to a given straight-line, through a given
point.

Figure 43: Proof of I.31 schematized.

It is a sheer construction-type proposition. On the straight-line BC, Euclid
picks a random point D and copies the angle ADC = α at point A. By I.27, line
EA is parallel to DC (Fig. 43 and the below table).

BC→ ADα
D E

In sum, proposition I.27 provides grounds for the existence of a line parallel
to p through a point A not lying on p; therein, ‘parallel’ means not intersecting p.
Due to I.29, it is the only line through A not meeting p. These two propositions
justify Hilbert’s version of Euclid’s axiom: There is at most one line parallel to
p through A. Since I.27 holds in the absolute geometry, we can also use a more
efficient version, namely: There is exactly one line parallel to p through A.

3.14. Sum of angles in triangle. I.32

I.32 Three internal angles of the triangle, ABC, BCA, and CAB, are equal to
two right-angles.

Figure 44: Proof of I.32 schematized.

To proof the thesis, Euclid transports angle α to point C, and draws CE,
which, by I.27, is parallel to AB (Fig. 44). Hence, by I.29, ∠ECD = β, and angles
at C sum up to “two right angles ”, β + α + γ = π.

The construction part comprises to drawing parallel line to AB through the
point C.
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AB||C
E

Note that, concerning the angle α, AC is an auxiliary line falling on AB and
EC, regarding β – BD is such a line. Thus, line EC is parallel to the side AB,
while other sides of the triangle play the role of auxiliary lines. It seems possible
that in that proof lies Euclid’s idea of Postulate V.

3.15. Parallelograms. I.33–34

I.33 Straight-lines joining equal and parallel on the same sides are themselves
also equal and parallel.

In that and the subsequent proposition, straight-line stands for a line segments,
thus rendered in symbols, I.33 reads (Fig. 45, middle and right),

l ∥ p, l = p ⇒ q ∥ s, q = s.

Figure 45: Elements I.33 and its schematized proof (middle and right).

From the assumption l ∥ p, by I.29, it follows that α = β. Due to SAS, the
equality of triangles obtains △ABC = △DCB. Hence, α′ = β′ and q = s. Finally,
since α′ = β′, by I.27, q ∥ s. □

I.34 For parallelogrammic figures, the opposite sides and angles are equal to
one another and a diagonal cuts them in half. In symbols (Fig. 46, right),

l ∥ p, q ∥ s ⇒ l = p, q = s.

Figure 46: Elements I.34 (left) and its schematized proof (right).

Since l ∥ p, by I.29, α = β. Similarly, from q ∥ s, the equality of angles follows
α′ = β′. Due to ASA rule, the equality of triangles △ABC = △DCB obtains. As
a result l = p and q = s. □
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3.16. Theory of equal figures. I.35–45

Euclid’s theory of equal figures is a set of propositions enabling the transfor-
mation of a (convex) polygon A into a square S, meeting the requirement A = S.
While congruence of figures is based on Common Notions 4, the equality of non-
congruent polygons is a procedural one: A = B iff there is a series of figures
A1, ..., An such that A1 = A, Ai = Ai+1, An = B, while equalities Ai = Ai+1 are
guaranteed by Common Notions and Postulates 1 to 3.24 (Błaszczyk, 2018) details
the theory, below we only sketch it.

It starts with proposition I.35, which states the equality of parallelograms
ADCB and EFCB which are on the same base and between the same paral-
lels (Fig. 47, upper left). Euclid reiterates the proviso between the same parallels
throughout I.35–45; it means the respective figures are of the same height.

The proof I.35 proceeds s follows: By I.34 and SSS, triangles AEB, DFC are
equal. Subtracting T1 from each of them, the remainders ADGB and EFCG are
equal (due to CN3). Adding T2 to both ADGB and EFCG, the whole parallelo-
gram ABCD is equal to the whole parallelogram EFCB (due to CN2).

Figure 47: Elements, I.35–38.

In proposition I.36 (Fig. 47, upper right), Euclid shows the same result for
parallelograms on equal bases. His argument relies on the transitivity of equality
guaranteed by CN1 and equalities based on I.35, namely, ADBC = EHCB, and
EHCB = EHFG.

Propositions I.37–38 (Fig. 47, bottom row) reiterate the same results regarding
triangles on the same base, and then, on equal bases. In both cases, triangles are
considered halves of respective parallelograms.

24The exhaustion method, developed in Book XII, brings in yet another meaning of equal
figures.
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I.41 demonstrates that a parallelogram on the same base and between the same
parallels as a triangle is the double of the triangle. I.42 shows a parallelogram equal
to a given triangle. Construction consists of finding the midpoint E of the base
BC and drawing parallel lines through E and C (Fig. 48, right). Since angle FEC
is arbitrary, that construction enables one to take a triangle into a rectangle.

I.43 demonstrates the equality of parallelograms FEBG and BMLA (Fig. 48,
right). I.44 shows how to transform a parallelogram into an equal parallelogram,
with an arbitrary height. It is the crucial construction and deserves a scrutiny.

Figure 48: Elements, I.42, 44.

Let the parallelogram FEGB be given (Fig. 48, right). The construction runs
as presented in the below table, where one takes A on the half-line EB→ at will,
setting the height of the parallelogram BMLA.

EB→ FG→, A ∥ GB FE→, HB→ K ∥ FG, GB→ HA→, KM→

A H K M L

The equality of parallelograms FEGB = BMAL follows from a subtraction
from equal triangles △FKH = △LKH, at first, equal triangles EBK and BMK,
then GBH and ABH.

This construction is known as applying FEGB to the given straight-line AB.
The applied parallelogram has to fit angle ∠BAL.

Proposition I.45 summarizes preceding theorems (Fig. 49, left). Euclid’s dia-
gram depicts a quadrangle ADCB, nevertheless, the method applies to any poly-
gon. The idea is this: cut the polygon ADCB into adjacent triangles, say ADB,
DCB; transform each triangle into a parallelogram (I.42), say P1, P2; let FGHK
be P1; apply to the line GH a parallelogram equal to P2 (I.44). It easily fol-
lows that FLMK = ADCB. Then, turn the resulting parallelogram FLMK into
a rectangle. In this way, any polygon A is transformable into an equal rectangle.

The theory culminates with a squaring of a rectangle introduced by the propo-
sition II.14 (Fig. 49, right). Polygons A and B, being turned into squares, are easily
compared in terms of greater-lesser.25

25In modern geometry, there are many tries to recover propositions I.35–45 based on an
arithmetic of line segments or non-Euclidean proportions, to mention (Hilbert, 1899, ch. 4),
(Hartshorne, 2000, ch. 5), or (Beeson, 2022).
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Figure 49: Elements, I.45 and II.14.

3.17. From equal figures to parallel lines. I.39–40

The theory of equal figures rests on the concept of a parallel line, meaning the
unique line drawn according to I.31: all throughout propositions I.35–38, Euclid
studies figures which are “between the same parallels”. In I.39–40, he takes the
other way around: starting from equal figures he seeks to reach parallel lines.

I.39 Equal triangles which are on the same base, and on the same side, are
also between the same parallels.

Let △ABC = △DBC (Fig. 50, left). In I.8, Euclid shows that two equal, i.e.,
congruent, triangles on the same side of a line are not possible. With a new sense
of equality, they are possible.

Figure 50: Elements, I.39, 40.

For the proof, suppose △ABC = △DBC and AD is not parallel to BC. Then,
the construction part follows: the parallel to BC through A meets BD at E.

A ∥ BC, BD→

E

On the one hand, by I.37, △BEC = △DBC, on the other, △BEC < △DBC.
The very thing is impossible. □

The proof of proposition I.40 reiterates the same reductio ad absurdum argu-
ment.
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3.18. Pythagorean theorem. I.46–48

I.46 To describe a square on a given straight-line.

Figure 51: Elements, I.46.

Proposition I.40 reiterates the same result in regard to triangles on equal bases.

A ⊥ AB AC, (A, a) D ∥ AB B ∥ AD
A, B C D E

The above table mirrors Euclid’s construction. The last column highlights the
fact that Euclid does not show that parallels to AB through the point D and
to CD through B meet at all. Given that they meet, ADEB is a parallelogram.
Hence, by I.34, all of its sides are equal. Furthermore, since AD falls upon parallel
lines AB, DE, and angle at A is right, then, by I.29, angle at D is also right.

□

I.47 In a right-angled triangle, the square on the side subtending the right-angle
is equal to the squares on the sides surrounding the right-angle.

Figure 52: Elements, I.47 (left) and the crux step of its proof (right).

Euclid’s construction includes arguments to the effect CA is straight-on to
AG that may surprise a modern reader. Indeed, since AG is a leg of a right-
angle triangle and CA is a side of a square described on another leg, he has to
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sq on BC sq on AB sq on AC A ∥ BD, DE
A, B, C D, E F , G H, K L

demonstrate these two line segments make a finite straight-line parallel to FB,
another side of the square (Fig. 52). Actually, it follows from I.15.

There are two proofs of the Pythagorean theorem in the Elements: I.47 and
VI.31. The first relies on the theory of equal figures, the second – on similar
triangles. The former proceeds as explained below.

On the one hand, by SAS, △FBC = △ABD. By I.41

sq FGAB = 2△FBC = 2△ABD = rec DBL.

Similarly,
sq AHKC = rec CEL.

Hence

sq FGAB = sq AHKC = rec DBL + rec CEL = sq BCDE.

Wherein, the equality such as rec DBL + rec CEL = sq BCDE, is proved
already in II.1 (Błaszczyk, Mrówka, Petiurenko, 2020).

□

I.48 If the square on one of the sides of a triangle is equal to the (sum of
the) squares on the remaining sides of the triangle then the angle contained by the
remaining sides of the triangle is a right-angle.

'

Figure 53: Elements, I.48; letters a, b, c, and c′ added.

A ⊥ AC AD→, Aa
A, C D B

In triangle △CAD, the equality holds c2 = a2 + b2, where CD = c, AD =
a, AC = b. In the right triangle △CAB, by I.47, the following equality holds
(c′)2 = a2 + b2. And Euclid continues, “the square on DC is equal to the square
on BC. So DC is also equal to BC”. Hence, by SSS, △CAD = △CAB, and
∠CAB = π/2 = ∠CAD.

□
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3.19. Non-Euclidean proportions. Beeson on equal figures

Proposition VI.2 (Thales theorem) is the starting point of Euclid’s theory of
similar figures. Its proof relies on VI.1 – the only one in Book VI which applies the
definition of proportion (V. def. 5). Euclidean proportion assumes that magnitudes
of the same kind are comparable in terms of greater-than. It is explicit in the
definition V.5 which we interpret as follows: a : b :: c : d iff for every pair of
natural numbers n, m the following conjunction obtains

(na >1 mb ⇒ nc >2 md) ∧ (na = mb ⇒ nc = md) ∧ (na <1 mb ⇒ nc <2 md),

where magnitudes of the same type being an ordered semi-group (M, +, <), mean-
ing a, b and c, d are elements of the structures (M1, +1, <1) and (M2, +2, <2)
respectively. In VI.1, for example, a, b are line segments, and c, d – triangles
(Błaszczyk, 2021).

In contrast, Descartes (Descartes, 1637, 298) takes the Thales theorem as a
definition of the product of line segments a ·b (Fig. 54, left); Hilbert (Hilbert, 1899,
ch. 3) adopts the same strategy regarding a right-angled triangle (Fig. 54, middle),
and reduces proportion to the equality of products, namely, a : b = c : d iff
a · d = c · b; Bernays (Hilbert, 1972, Supplement II) follows Hilbert, but turns his
definition into a proportion of line segments, namely: a : b = c : d iff a, b and c, d
are legs of equiangular right-angled triangles (Fig. 54, right).26

Figure 54: Starting with the Thales theorem: Descartes, Hilbert, Bernays.

Hilbert, Hartshorne, and Bernays, due to the Pappus’s, the cyclic quadrilat-
eral, and Desargues’s theorem, respectively, managed to recover Euclid’s theory
of similar triangles and proposition VI.16, relating proportion of line segments
a : b = c : d with the equality of products a · d = c · b or rectangles ad = cb – all
that without referring to the relation greater-than.

However, non-Euclidean proportions, such as Bernays’s, apply only to line
segments and can not even formulate acmes of Euclid’s theory which played a sig-
nificant role in the early modern mathematics, namely V.19–20, relating areas of
similar figures and the similarity scale.27

26More precisely, Bernays defines a ratio of legs a, b of a right-angled triangle in the following
way: a : b = α, where α is the angle opposite to the side a, and then, a proportion a : b = c : d
being equality of two rations. Hartshorne takes Bernay’s ratio as a definition of the product
a · b and simplifies Hilbert’s proof of the commutativity of the product and the distributive law
(Hartshorne, 2000, 170–172).

27See for example (Descartes, 1637, 104–105).
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On the other hand, within the option of the segment arithmetic (Hilbert,
Hartshorne), the formula for the area of a triangle, one-half of the product of
a base and corresponding altitude, enables to formulate counterparts of VI.19–
20. Though, the formula for the area of a triangle requires proof that it does not
depend on the choice of a pair base and corresponding altitude. Indeed, right-
angled triangles, first, with hypotenuse b and leg ha, second, with hypotenuse a
and leg hb, are equiangular (Fig. 55, left), thus a : hb = b : ha, which within
the arithmetic of line segments means a · ha = b · hb. Similarly, we can show that
a · ha = c · hc.28

Figure 55: The invariance of the area of a triangle based on formula (left), equality
of rectangles aha = bhb = chc (right).

Beeson (Beeson, 2022) seeking to revise Euclid’s theory of equal figures and its
foundations, adopts Bernays’s definition of proportion and the following definition
of equal rectangles: rectangles placed like yellow ones in Fig. 56 are equal iff points
B, H, K are collinear. Thus, starting from the special case of I.43 (or I.44) taking a
rectangle instead of a parallelogram, he gets both Bernays’s proportion b : a = d : c
and his own equality of rectangles (Fig. 56).29

Regarding triangles, instead of the product of a base and the corresponding
altitude, he considers a respective rectangle, e.g., with sides a, ha. Since each base
and the corresponding altitude determine different rectangles, Beeson has to show
that they are equal (due to his definition). Indeed, he shows that rectangles with
sides a, ha, b, hb, and c, hc are equal (Fig. 55, rectangles blue, red and green,
respectively). Yet, the proof is the same as the one on the formula for the area
of a triangle (Beeson, 2022, Theorem 6.1). Finally, two triangles are equal iff the
corresponding (circumscribed) rectangles are equal (Beeson, 2022, Definition 5.10).

28Cf. “It is not the case that just because we can multiply, we can define areas, even of triangles.
The problem of interpreting what Euclid meant by ‘equal area’ is not automatically solved by
defining geometric arithmetic” (Beeson, 2022, 6). We can not guess any rationale for that claim.

29That is how Beeson motivates his study: “The contribution of this paper is to eliminate
the ‘equal figures’ axioms by defining the notions of ‘equal triangles’ and ‘equal quadrilaterals’”
(Beeson, 2022, 6). Besson’s sketchy analysis does not explain what he finds wrong with Euclid’s
equal figures axioms, i.e., Common Notions, while some of his comments contradict textual
evidence, for example, “it is worth noting that not only does he [Euclid] never mention the word
‘area’, but he also never speaks of one figure being greater than another. He never applied the
common notions that mention ‘greater than’ to figures” (Beeson, 2022, 4).
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Figure 56: Beeson’s definition of equal rectangles.

Figure 57: I.47 through Beeson’s method.

Now, let us check whether Beeson’s idea of equal rectangles provides new
insights. Since I.47 is the first application of Euclid’s theory of equal figures, let
us test Beeson’s method on that proposition.30 In the right-angled triangle ABC,
let us denote BC = c = ML, AB = a, BM = ca (Fig. 57, left). Within Bernays’s
theory, one can show the counterpart of VI.8, i.e., proportion a : ca = c : a, and
then, mirror Euclid’s proof of the Pythagorean theorem based on similar triangles
(VI.31). Euclid’s proof I.47 builds on his theory of equal figures, so let us try that
option. To show that yellow square and rectangle are equal (Fig. 57, middle), one
has to place them like in Fig. 57 (the diagram on the right). Then, their equality
follows from the proportion, namely a : ca = c : a and VI.6. However, we need
another axiom to guarantee that the square in the middle diagram equals the
square in the diagram on the right. To that end, Beeson adopts the following rule:
“Two rectangles are congruent if their sides are pairwise equal” (Beeson, 2022, 13).

In Euclid’s proof, equality of triangles △FBC and △ABD guarantees equality
of yellow square and rectangle. It follows from proposition I.4; within the Hilbert
system, let us remind, it is axiom C6. Beeson’s rule on equal rectangles, thus, is

30Cf. Beeson’s account of I.47 (Beeson, 2022, 2).
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just an extra axiom. We cannot figure out any benefits of such an extension of
the Euclid system. The original technique of triangulation imprints on Euclid’s
absolute geometry and his theories of equal and similar figures.

Finally, there is a fundamental ambiguity in Beeson’s project as he writes:

The contribution of this paper is to eliminate the ‘equal figures’ axioms
by defining the notions of ‘equal triangles’ and ‘equal quadrilaterals’,
by a definition that Euclid could have given, and proving the properties
expressed in the ‘equal figures’ axioms, so that Euclid Books I to IV
could be developed without the equal figures axioms. [...] Our method
to achieve this aim is to define ‘equal rectangles’ using a figure much
like the one Euclid uses for Prop. I.44. and use that to define ‘equal
triangles’ and ‘equal quadrilaterals’ and use those defined notions to
prove the propositions of Euclid Book I. [...] It follows that the equal-
figures axioms are actually superfluous, in the sense that, using the new
definition of ‘equal figures’, we could formalize Euclid Book I directly,
without adding any equal-figures axioms. But we then take one step
more, and show that the equal-figures axioms can in fact all be proved
(Beeson, 2022, 6–7).

We have shown that in propositions I.1–34 Euclid applies Common Notions to
congruent triangles and the theory of parallel lines enable him to define a rectangle.
It is not clear, to say the least, how can Beeson develop Elements I.1–28 based on
the concept of rectangle when he can not prove the existence of a rectangle.

3.20. Euclid and modern geometry. Mueller on Book I

In the Elements (Στοιχεῖα), Euclid studies elements (στοιχεῖα) of primitive
matter. According to Plato’s cosmology, these were regular solids: tetrahedron,
cube, octahedron, icosahedron (Timaios, 54d–55c). Euclid managed to construct
the fifth one, unknown to Plato (Timaios, 55c), namely, dodecahedron. These
elements, although real, were considered invisible (Timaios, 56c). Book XIII shows
how to construct them, compares their sides when enclosed in the same sphere,
and finally, includes the demonstration that there are no other regular (convex)
polyhedra (XIII.18).

Viewed from that cosmological perspective, Book I through IV, have a clear
objective: to construct an equilateral and equiangular pentagon (IV.11). Proposi-
tion IV.10 is essential in that plan. Digging through its proof, we find the entire
resources of Euclid’s plane geometry.

IV.10 To construct an isosceles triangle having each of the angles at the base
double the remaining (angle).

In the Fig. 58, AB is the radius of the bigger circle; to simplify the subsequent
account, let us put AC = a, BC = b. C is a point on AB such that (a + b)b = a2

(II.11), D is such that BD = a (I.3) and AD = AB, meaning, it is an intersection
of two circles. ACD is the circumcircle on the triangle △ACD (IV.5)

By III.37, BD is tangent to the circle ACD, hence, by III.32, ∠BAD =
α = ∠CDB. Since the triangle △BAD is isosceles, the equality of angles holds
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Figure 58: Elements, IV.10.

∠ABD = α + β = ∠BDA (I.5). By I.32, ∠ACD = π − (α + β). Hence, by I.13,
∠BCD = α + β. Thus, the triangle △CDB is isosceles and CD = a = BD (I.6).
Again, the triangle △ACD is isosceles and α = β (I.5). Finally, in the triangle
△ABD angles at the base BD double the angle at A.

□
Moreover, reviewing proofs of referred propositions, we find out that I.47 is

the basic technique while proving II.9–14 and III.36–37, while propositions I.11–12
are essential when a tangent to a circle is studied. In short, Book IV, specifically
IV.10, applies all sub-theories developed by Euclid in Books I through III.

In the 20th century, applications do not affect the understanding of geometry.
Modern interpretations take a strictly formal perspective, focused on whether the
theory is consistent (Hilbert), categorical (Borsuk and Szmielew), or decidable
(Tarski). Accordingly, they seek to tame the formal language of geometry and
expose its techniques such as congruent triangles, transportation of line segments,
and angles. Indeed, it was basically our perspective while reviewing Book I. In
the 21st century, that tendency pushes forward into automated theorem proving
(Beeson, 2010), (Janičić, Narboux, Quaresma, 2012), (Beeson, Narboux, Wiedijk,
2019), (Błaszczyk, Petiurenko, 2019).

(Mueller, 1981) takes yet another position and reviews Book I from the per-
spective of the most important proposition. Mueller explains it as follows:

book I can be explained by reference to the construction of a parallelo-
gram in a given angle and equal (in area) to a given rectilinear figure in
proposition 45. [...] The point of view adopted here may be expressed
by saying that this knowledge and the desire to prove I.45 by them-
selves suffice to account for much of book I. Obviously, even when this
point of view is correct, it leaves much out of consideration. [...] More
importantly perhaps, no explanation is offered for Euclid’s interest in
proving I.45 or II.14 rather than, e.g., justifying some formula or pro-
cedure for computing the area of an arbitrary figure (Mueller, 1981,
16–17).
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Mueller, thus, believes proposition I.45 is the most important in Book I as
it crowns the theory of equal figures, but he does not provide any rationale for
that theory. From the perspective of regular polyhedra, the motivation for the
theory of equal figures is the following: equality of non-congruent figures enables
proving I.47, and then, both equality of non-congruent figures plus I.47 make tools
in proving II.11 and III.37, which find their rationale in IV.10. We can speculate
whether it could be any different. Hilbert’s theory of plane area, as developed in
(Hilbert, 1899, ch. 4), or Hartshorne’s area function (Hartshorne, 2000, ch. 5),
provide alternatives that, interestingly, rely on the arithmetic of line segments
introduced by Descartes. The fact is, ancient mathematics did not develop any
alternative to Euclid’s theory of equal figures.

3.21. Non-use of the Fifth Postulate

In stark contrast to Euclidean practice, an opinion prevails that the Fifth
Postulate is problematic, controversial, or unobvious. In proposition I.30 Euclid
does not demonstrate the existence of the straight-line GK falling across three
lines AB, EH, and CD (Fig. 42). In I.39, he takes for granted that lines BD and
the parallel to BC drawn through A meet in E (Fig. 50).31 In I.46, he does not
show that the parallel to AB drawn through D and the parallel to AD drawn
through B meet in E (Fig. 51). In IV.5, when showing that the center of the
circumcircle of a triangle is the intersection of perpendicular bisectors of its sides,
he considers cases depending on whether they meet inside the triangle, or on
its side, or outside it; he does not show that they meet at all. Indeed, in all these
cases, the existence of intersection points follows from the Postulate 5. Interestingly
enough, Euclid does not even mention there is a need to prove it. It is in contrast
with the meticulousness of his other proofs. The only exception is I.44, where
Euclid invokes the Postulate 5 to show that straight lines FE and HB meet at
point K (Fig. 48).

Some of these propositions, e.g., IV.5, are equivalent forms of the Fifth Postu-
late; others, e.g., the relationship between I.30 and I.46, led to intriguing debate
within the modern foundations of geometry (Pambuccian, 2021). In the subse-
quent section, we present a model of non-Euclidean plane and will discuss the
assumptions underlying these propositions.

Figure 59: Seeking for intersection points in propositions I.30, 39, 46.

31Similarly in constructions such as I.42, 44, 45.
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4. Semi-Euclidean plane

In this section, we present a model of a semi-Euclidean plane, i.e., a plane in
which angles in a triangle sum up to π yet the parallel postulate fails. (Hartshorne,
2000, 311), introduces that term, but the very idea originates in (Dehn, 1900,
§ 9). Dehn built such a model owing to a non-Archimedean Pythagorean field
introduced in (Hilbert, 1899, § 12); yet, it was a non-Euclidean field.32 We employ
the Euclidean field of hyperreal numbers. In the Cartesian plane over hyperreals,
the circle-circle and circle-line intersection axioms are satisfied, meaning one can
mirror Euclid’s straightedge and compass constructions. To elaborate, let us start
with the introduction of the hyperreal numbers.

4.1. The Cartesian plane over the field of hyperreal numbers

An ordered field (F, +, ·, 0, 1, <) is a commutative field together with a total
order that is compatible with sums and products. In such a field, one can define
the following subsets of F:

L = {x ∈ F : (∃n ∈ N)(|x| < n)},

Ψ = {x ∈ F : (∀n ∈ N)(|x| > n)},

Ω = {x ∈ F : (∀n ∈ N)(|x| < 1
n )}.

They are called limited, infinite, and infinitely small numbers, respectively.
Here are some relationships helpful to pursue our arguments.

(∀x, y ∈ Ω)(x + y ∈ Ω, xy ∈ Ω),

(∀x ∈ Ω)(∀y ∈ L)(xy ∈ Ω),

(∀x ̸= 0)(x ∈ Ω ⇔ x−1 ∈ Ψ).

To clarify our account, let us observe that the following equality Ω = {0} is
a version of the well-known Archimedean axiom.

Since real numbers form the biggest Archimedean field, every field extension
of (R, +, ·, 0, 1, <) includes positive infinitesimals. Let U be a non-principal ultra-
filter on N. The set of hyperreals is defined as a reduced product R∗ = RN/U .
Sums, products, and the order are introduced pointwise. The field of hyperreals
(R∗, +, ·, 0, 1, <) extends real numbers, hence, includes infinitesimals and infinite
numbers; moreover, it is closed under the square root operation (Błaszczyk, 2016),
(Błaszczyk, 2021). Fig. 60 represents in a schematized way a relationship between
R and R∗, as well as between L, Ψ, and Ω.

Due to the proposition (Hartshorne, 2000, 16.2), the Cartesian plane over the
field of hyperreals is a model of Euclidean plane, with straight lines and circles
given by equations ax + by + c = 0, (x − a)2 + (y − b)2 = r2, where a, b, c, r ∈ R∗

and due to the equation of a straight line, parameters a, b have to satisfy condition
a2 +b2 ̸= 0; angles between straight lines are defined as in the Cartesian plane over

32See also (Hartshorne, 2000, § 18). Example 18.4.3 expounds Dehn’s model.
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Figure 60: The line of real numbers and its extension to hyperreals.

the field of real numbers. Specifically, on the plane R∗ × R∗, angles in triangles
sum up to π. Parallel lines are of the form y = mx + b and y = mx + c, while
a perpendicular to the line y = mx + b is given by the formula y = − 1

m x + d.
Now, let us take a subspace L×L of the plane R∗×R∗. In that plane, circles are

defined by analogous formula, namely (x − a)2 + (y − b)2 = r2, where a, b, c, r ∈ L,
while every line in L × L is of the form l ∩ L × L, where l is a line in R∗ × R∗.
Since we want plane L × L include lines such as y1 = εx, where ε ∈ Ω, it also has
to include the perpendicular y2 = −1

ε x, but −1
ε /∈ L. Formula l ∩ L × L, where

l = ax + by + c and a, b, c ∈ R∗ guarantees the existence of the straight line y2 in
L×L. Finally, the interpretation of an angle is the same as in the model R∗ ×R∗.

Figure 61: Perpendicular lines with infinitesimal and infinitely large slopes.

Explicit checking shows that the model characterized above satisfies all Hilbert
axioms of non-Archimedean plane geometry plus the circle-circle and line-circle
axioms, except parallel axiom; the more general theorem concerning Hilbert planes
also justifies our model, namely (Hartshorne, 2000, 425), Theorem, 43.7 (a).

With regard to parallel lines, let us consider the horizontal line y = 1 and two
specific lines through (0, 0), namely y1 = εx, y2 = δx, where ε, δ ∈ Ω. (Fig. 62).
Since ΩL ⊂ Ω, the following inclusions hold y1, y2 ⊂ L× Ω. In other words, values
of maps y1(x), y2(x) are infinitesimals, given that x ∈ L. The same obtains for any
line of the form y = µx, with µ ∈ Ω. Since there are infinitely many infinitesimals,
there are infinitely many lines through (0, 0) not intersecting the horizontal line
y = 1.
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1 1

Figure 62: Non-Euclidean plane L × L vs. Euclidean plane R∗ × R∗.

Since every triangle in L × L is a triangle in R∗ × R∗, it follows that angles in
a triangle on the plane L × L sum up to π (Fig. 63).

Figure 63: Triangles in Euclidean plane R∗ × R∗ and its subspace L × L.

4.2. Euclid’s propositions which do not hold
in the plane L × L

In proposition I.30, Euclid assumes the existence of a line falling on three
parallel lines. In the plane L×L that assumption fails. Let us take three horizontal
lines y1 = 0, y2 = ε, y3 = 1. Line y4 = εx meets y1 at (0, 0) and y2 at (1, ε). Yet
the intersection of y4 and y3 is ( 1

ε , 1) which does not belong to L × L (Fig. 64).
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Figure 64: Transverse line crossing two of the three parallel lines.

In I.46, describing a square on a given straight line, Euclid draws parallels to
sides of a right angle. As the construction applies I.31, they are perpendicular to
the sides of the right angle. In the below examples, we take them to be literally
parallels. In the plane L × L, they have to meet, but the resulting figure is not
a square (Fig. 65).

Figure 65: Parallels to sides of the right angle.

Let y1 = εx + 1 and y2 = x
ε − 1

ε , where ε ∈ Ω. They do not intersect x = 0 and
y = 0, respectively, meaning, y1 ∥ x = 0, y2 ∥ y = 0. Yet, they meet at the point
( 1+ε

1+ε2 , 1 + ε2+ε
1+ε2 ), and the resulting figure is not a square.

In VI.5, Euclid assumes that perpendicular bisectors of two sides of a triangle
meet. Below we show it does not hold in the plane L × L.

Let us take the line y = −ε and points A = (−1, −ε), B = (1, −ε) on it. A
line through the point C = (0, 0) and A has the equation y = εx. Perpendicular
bisectors of the sides AB and AC have the equations x = 0 and 2x+2εy+ε2+1 = 0,
respectively. They meet at the point

(
0, −ε − 1

ε

)
. However,

(
0, −ε − 1

ε

)
/∈ L × L.

Fig. 66 depicts three perpendiculars to the sides of the triangle ABC.
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Figure 66: Triangle in L × L with no circumcircle (left) and its counterpart in
R∗ × R∗ (right).

4.3. Klein and Poincaré disks. Euclidean trigonometry

Figure 67: Straight lines in Klein (left) and Poincaré (right) disk.

Klein and Poincaré disks are classical models of non-Euclidean geometry (Fig.
67). Both consist of a fixed circle in the Euclidean plane, say Γ, representing the
plane. In the Klein disk, chords of Γ are straight lines; in the Poincaré disk, straight
lines are diameters of Γ or arcs of circles orthogonal to Γ (Fig. 67).

In the Poincaré model, an angle between intersecting circles is the Euclidean
angle between tangents to these lines drawn at their intersection point (Fig. 68).
In the Klein disc, an angle between intersecting straight lines is retrieved from the
Poincaré model as presented in Fig. 69: for lines n, m, we draw circles orthogonal
to Γ and determine the angle between them.

Standard models of the non-Euclidean plane, thus, change Euclid’s concept of
a straight line or angle. In the plane L×L, they are both Euclidean. Moreover, we
can also develop Euclidean trigonometry in that plane. To elaborate, let us step
back to the construction of the field of hyperreals.
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Figure 68: Angles in the Poincaré disc.

Figure 69: Angles in the Klein disc.

Let f be a real map, i.e. f : R 7→ R. Its extension to a map on R∗, f∗ : R∗ 7→ R∗,
is defined by

f∗([(rn)]) = [(f(r1), f(r2), ...)]. (1)

If r ∈ R, then f∗(r) = [(f(r), f(r), ...)]. Since we identify real number r with
hyperreal [(r, r, ...)], the equality f∗([(r, r, ...)]) = f(r) obtains, meaning, f∗ ex-
tends f , f∗

|R = f .
Putting f = √ in definition (1), we get√

[(rn)]
∗

= [(
√

rn)] = [(
√

r1,
√

r2, ...)], for [(rj)] > 0.

Similarity, under the definition (1), we have

sin∗[(rn)] = [(sin r1, sin r2, ...)], cos∗[(rn)] = [(cos r1, cos r2, ...)].

Since for every n the identity sin2 rn + cos2 rn = 1 holds, we have

(sin∗ x)2 + (cos∗ x)2 = 1.

Similarly, every trigonometric identity translates into an identity involving the
maps sin∗ and cos∗, tan∗, and cot∗. From a local perspective, thus, the plane L×L
is similar to a Euclidean plane, globally – to put it metaphorically – its straight
lines are too short to meet the Parallel Postulate. Last but not least, that plane has
a unique educational advantage: expounding crucial ideas of that model requires
only the basics of Cartesian geometry and non-Archimedean fields.
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